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ABSTRACT

Zero-shot stance detection (ZSSD) is challenging as it requires de-

tecting the stance of previously unseen targets during the inference

stage. Being able to detect the target-related transferable stance fea-

tures from the training data is arguably an important step in ZSSD.

Generally speaking, stance features can be grouped into target-

invariant and target-specific categories. Target-invariant stance

features carry the same stance regardless of the targets they are as-

sociated with. On the contrary, target-specific stance features only

co-occur with certain targets. As such, it is important to distinguish

these two types of stance features when learning stance features

of unseen targets. To this end, in this paper, we revisit ZSSD from

a novel perspective by developing an effective approach to distin-

guish the types (target-invariant/-specific) of stance features, so as

to better learn transferable stance features. To be specific, inspired

by self-supervised learning, we frame the stance-feature-type iden-

tification as a pretext task in ZSSD. Furthermore, we devise a novel

hierarchical contrastive learning strategy to capture the correlation

and difference between target-invariant and -specific features and

further among different stance labels. This essentially allows the

model to exploit transferable stance features more effectively for

representing the stance of previously unseen targets. Extensive

experiments on three benchmark datasets show that the proposed

framework achieves the state-of-the-art performance in ZSSD.
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1 INTRODUCTION

The aim of stance detection is to determine people’s opinionated

standpoint or attitude (e.g. Favor,Against, orNeutral, etc.) expressed
in text towards a specific target, topic or proposition [3, 27, 35],

which is a vital task in natural language processing (NLP) [18]. In

traditional in-target stance detection [16], the same set of targets

are assumed to be seen in both the training and the test sets. How-

ever, in real world scenarios, the targets during inference might be

unseen/unknown to a trained stance detection model [1], since it

is infeasible to enumerate all possible targets beforehand during

model training. Cross-target stance detection [3, 43] partially allevi-

ates this issue by adapting classifiers trained on a certain target to

a related new target. But this is based on a strong assumption that

knowing the target relation in advance. To address the problem of

target mismatch between training and testing, we proposed a zero-

shot stance detection (ZSSD) framework, which aims to perform

stance detection on unseen targets, a more realistic setup.

To deal with ZSSD, some existing methods attempt to introduce

attention mechanisms [1] or external knowledge to capture rela-

tionships between targets [24], in order to generalize to unseen

targets. However, in practice, directly transferring stance features

from seen targets to unseen ones may not lead to good results since

there might be features specific to certain targets. As such, it is

important to distinguish target-invariant features, which carry the

same stance regardless of the targets they are associated with, from

target-specific ones, which only co-occur with certain targets.

To illustrate our idea, we give examples of target-invariant and

-specific stance expressions in Figure 1. Words that are indicative of

a target are highlighted in red italic. In the target-invariant stance

expression, the original stance expressed in the context can still be

identified even when the target or target-related words are masked.

While in the target-specific one, it is difficult to make sense of the

stance information if the target and the target-related words are

masked. That is, these two types of stance features play different

roles in learning stance information for the unseen targets.

https://doi.org/10.1145/3485447.3511994
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Target: parental support education                          Stance: Pro
Sentence: Agree kids need homework, parent should help child learning.

Masked Target: [MASK]                                        Stance: Pro
Masked sentence: Agree [MASK], [MASK] should help [MASK].

Target-invariant stance expression

Target: climate change is a real concern                 Stance: Pro
Sentence: When your wearing sweaters in the summer.

Masked Target: [MASK]                                        Stance: ?
Masked Sentence: When your wearing [MASK] in the [MASK].

Target-specific stance expression

Figure 1: Examples of the types of stance expressions.

We hence propose to study how to automatically detect the types

(target-invariant/-specific) of stance features in the training data.

To identify the target-invariant stance features, some existing re-

search efforts focus on utilizing adversarial learning by introducing

a discriminator to deal with an auxiliary task of target classifi-

cation [2, 41]. However, in practice, the imbalanced distribution

of stance targets may limit the performance of the discriminator

trained on labeled targets. We propose an alternative unsupervised

approach which distinguishes target-invariant and target-specific

stance features by examining the stance change when masking a

target and the target-related words.

More concretely, for each target, we first derive a set of target-

related words and determine their relatedness weights. Here, the

formulation of deriving target-related words could be based on

relatedness measures, including but not limited to TF-IDF, word

similarity, and topic modeling results. After that, the target-related

words will be selected as candidates to be masked according to

their weights in order to generate masked training instances. Then,

we explore a simple but effective solution that feeds the masked

instances into a well-trained stance detection model (training accu-

racy is close to 100%) to predict their stance labels. The prediction

results, subsequently, are exploited to generate the surrogate super-

vision signal of pretext task for contrastive self-supervised learning.

That is, intuitively, the stance expression is target-invariant if the

predicted label of the masked instance is correct, otherwise it is

target-specific. Finally, inspired by [5], to improve the quality of

the learned embeddings by distinguishing the types of stance fea-

tures in the latent distribution space, we devise a novel hierarchical

contrastive learning strategy that considers both the surrogate

supervision signal and the stance label information. We call the

proposed framework Pretext Task-based Hierarchical Contrastive

Learning (PT-HCL). This enables the transferable stance features

to be leveraged for understanding the stance expressions of unseen

targets, and thus leads to improved ZSSD performance. The main

contributions of our work can be summarized as follows:

• The ZSSD task is approached from a new perspective that

the types (target-invariant/-specific) of stance features are

distinguished in the latent distribution space, so as to prefer-

ably leverage the target-oriented transferable stance features

for stance detection of previously unseen targets.

• A novel scenario of deriving surrogate supervised signals

for self-supervised feature learning is explored by predicting

the masked variants of the well-trained instances, in which

the training sentences are masked in the light of the target-

related words to generate masked instances.

• Based on the surrogate supervised signal of the pretext task,

we devise a novel hierarchical contrastive learning frame-

work (PT-HCL) to improve the quality of learned represen-

tations by considering both the types of stance features and

the stance labels, enabling preferably generalize the learning

ability of the model to deal with ZSSD.

• Extensive experiments on 3 benchmark datasets show that

the proposed framework achieves state-of-the-art perfor-

mance in ZSSD. We also extend the proposed framework to

few-shot and cross-target stance detection to demonstrate

the superiority and generalization of our approach.

2 RELATEDWORK

2.1 Zero-shot Stance Detection

Previous studies of stance detection largely focus on target-specific

stance detection, where the training and inference stages share

the same pre-defined set of targets [3, 11, 19, 22, 33, 36]. In pre-

vious research, a task similar to ZSSD is the cross-target stance

detection, where the learning ability of the classifier is adaptive to

the unseen but related targets in the light of training on a known

one [23, 41, 43, 45]. Existing cross-target stance detection research

efforts generally explored attention-based models [41, 43] or graph-

based models [23, 45] to learn a projection that aims to transfer the

target-related stance features from a specific training target to adapt

the related testing one. Different from cross-target stance detection,

zero-shot stance detection (ZSSD) aims to automatically identify the

stance of the previously unseen targets, which is a more accurate

evaluation of a model’s ability to generalize to the newly emerg-

ing targets in the real world scenario [1]. To deal with zero-shot

stance detection, [8] presented a large-scale expert-annotated Twit-

ter stance detection dataset, where the testing targets are unknown

to the training targets set. Allaway and McKeown [1] created a

ZSSD dataset consists of a large range of topics covering broad

themes and proposed a topic-grouped attention model to implic-

itly capture relationships between targets by using generalized

topic representations. [2] adapted a target-specific stance detection

dataset [27] to ZSSD, and deployed adversarial learning to extract

target-invariant transformation features in ZSSD. Further, to ex-

ploit both the structural-level and semantic-level information of the

relational knowledge, [24] proposed a commonsense knowledge

enhanced graph model based on BERT [9] to cope with ZSSD.

2.2 Pretext Task and Contrastive Learning

Self-supervised learning is a prominent research paradigm where

the supervisory signal for feature learning is automatically gener-

ated from the data itself. The recent renaissance of self-supervised

learning began with artificially designed prediction tasks, often

referred to as pretext tasks [5, 12, 47]. Many existing computer vi-

sion approaches have designed annotation free pretext tasks based

on heuristics such that providing a surrogate supervision signal of

feature learning for the target problems [12, 21, 34, 47]. Such as rel-

ative patch prediction [10], solving jigsaw puzzles [28], and image

rotation prediction [7, 12], etc. Further, contrastive learning in the

latent space has recently shown great promise in self-supervised

learning, allowing the automatically generated supervisory signal

to be effectively close the gap with fully-supervised learning and

improve the quality of the learned representations of the training
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Figure 2: The architecture of the proposed PT-HCL framework. Shapes in gradient colors represent hidden vectors, and different

shapes represent different labels of the surrogate supervised signal provided by the pretext task.

data [5, 6, 15, 20, 26, 37, 42]. On the other hand, recent literature

has attempted to design their methods by relating contrastive learn-

ing for natural language processing [17, 25, 30, 44], such as text

clustering [46], unsupervised textual representations [13], text clas-

sification [31], and multilingual neural machine translation [29], etc.

As such, inspired by existing remarkable self-supervised learning

approaches, we attempt to deploy a novel Pretext Task-based Hier-

archical Contrastive Learning (PT-HCL) framework to preferably

generalize the target-oriented transferable stance features learned

from known targets to the unseen targets for dealing with ZSSD.

3 METHODOLOGY

In this section, we describe our proposed PT-HCL framework for

zero-shot stance detection in detail. As demonstrated in Figure 2,

the proposed PT-HCL framework mainly consists of two modules:

data augmentation based on the self-supervised learning pretext task
(data augmentation via pretext task) and the proposed contrastive
learning framework (hierarchical contrastive learning frame-

work). The first module, data augmentation via pretext task,

mainly contains three steps: 1) training an over-fitting stance detec-

tion model M; 2) deriving masked candidates for each target; and

3) generating augmentation data for the training set. The module,

hierarchical contrastive learning framework, mainly contains

three components: 1) the encoder; 2) hierarchical contrastive learn-

ing; and 3) the stance classifier.

3.1 Task Description

Formally, supposing there is a set of annotated instances towards

source targetsD𝑠 = {(𝑟 𝑖𝑠 , 𝑡𝑖𝑠 , 𝑦𝑖𝑠 )}
𝑁𝑠

𝑖=1
and a set of unlabeled instances

towards unseen or testing targets D𝑑 = {(𝑟 𝑖
𝑑
, 𝑡𝑖
𝑑
)}𝑁𝑑

𝑖=1
, where 𝑦𝑖𝑠 is

the stance label of an annotated instance towards the source target

𝑡𝑠 , 𝑁𝑠 and 𝑁𝑑 are the number of instances towards the training and

testing targets, respectively. Note that there is no overlap between

D𝑠 and D𝑑 . The goal of zero-shot stance detection is to train a

model from each sentence 𝑟 𝑖𝑠 towards the source known target

Table 1: Examples of topic words.

Target Topic words

parental support education learn, kid, need, problem, homework,

paren, child, learning, teach, book

American unemployment unemployment, americans, neighbors,

paid, job, pay, cost, outsourcing, com-

munities, rate

𝑡𝑖𝑠 from D𝑠 , which can be generalized to detect stance for each

sentence 𝑟 𝑖
𝑑
towards an unseen target 𝑡𝑖

𝑑
in D𝑑 .

3.2 Data Augmentation via Pretext Task

To distinguish the types (target-invariant/-specific) of stance fea-

tures in order to better learn transferable stance features for the

unseen targets in ZSSD, we explore a novel strategy of data aug-

mentation based on a target-aware self-supervised learning pretext

task and a well-trained stance detection modelM. Here, inspired by

existing methods [5, 12, 34, 47], we design the task of distinguishing

the types of stance features as a pretext task in order to provide a

surrogate supervised signal for contrastive learning.

3.2.1 Training a Vanilla Stance Detection Model from the Training
Data. To learn a good representation for each training instance in

D𝑠 , we first train a vanilla stance detection modelM with D𝑠 . For

each instance consisting of a sentence 𝑟 𝑖𝑠 and a target 𝑡
𝑖
𝑠 , we employ

the pre-trained uncased BERT-base [9] as the stance detectionmodel

M, which takes “[𝐶𝐿𝑆]𝑟 𝑖𝑠 [𝑆𝐸𝑃]𝑡𝑖𝑠 [𝑆𝐸𝑃]” as input.We use the vector

of token [𝐶𝐿𝑆] to represent the input instance for stance detection.

Here, the training accuracy ofM is close to 100%.

3.2.2 Deriving Masked Candidates for Each Target. The aim of

deriving masked candidates for each target is to extract a set of

target-related words and derive their relatedness weights, which

can be later selected as candidates to be masked according to their

weights. Methods used to identify related words include TF-IDF,

word similarity measures, and topic models. In this work, we deploy

gaozhaoze
高亮文本
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latent Dirichlet allocation (LDA) [4] to capture topic words for each

target
1
. Following the LDA implementation of [14], the documents

of each target could be expressed by𝑇 topics and each topic contains

𝐾 words. As such, the corresponding topic words can be regarded

as a bridge to leverage the target-related words in the context,

allowing the crucial clues of the mentioned target to be explicitly

used in stance features learning. Table 1 presents the top 10 topic

words of two example targets. We observe that the topic words are

quite relevant to the corresponding target.

3.2.3 Generating Augmentation Data. To distinguish the target-

invariant and target-specific stance features for better learning

transferable stance features in ZSSD, we design a pretext task via

self-supervised learning to automatically generate auxiliary super-

visory signals from the training data. Specifically, as the examples

shown in Figure 1, we mask the topic words in each training sen-

tence with a special token [𝑀𝐴𝑆𝐾]. Then, we feed the masked

sentence paired with the masked target [𝑀𝐴𝑆𝐾] into the vanilla

stance detectionmodelM to predict the stance label of this instance.

If the predicted label is correct, which implies its stance expression

is not dependent on the target, then the stance expression of the in-

stance is target-invariant. Accordingly, we attach an augmentation

label of “target-invariant” to this instance. Otherwise, the augmen-

tation label is “target-specific”. Formally, after data augmentation,

the training set can be represented as D𝑠 = {(𝑟 𝑖𝑠 , 𝑡𝑖𝑠 , 𝑦𝑖𝑠 , 𝑝𝑖𝑠 )}
𝑁𝑠

𝑖=1
.

3.3 The Proposed Framework

3.3.1 Encoder Module. Given a sequence of words 𝑟 = {𝑤𝑖 }𝑛𝑖=1 and
the corresponding target 𝑡 , 𝑛 is the length of the text 𝑟 . Here, we use

𝑟 and 𝑡 to represent the sentence and the target of a training instance.

Then, we adopt a pre-trained BERT [9] as the Encoder Module and

feed “[𝐶𝐿𝑆]𝑟 [𝑆𝐸𝑃]𝑡 [𝑆𝐸𝑃]” as input into the encoder module to

acquire a 𝑑𝑚-dimensional hidden representation 𝒉 ∈ R𝑑𝑚 of the

token [𝐶𝐿𝑆] of each input sample:

𝑯 = BERT( [𝐶𝐿𝑆]𝑟 [𝑆𝐸𝑃]𝑡 [𝑆𝐸𝑃]),𝒉 = 𝑯 [𝐶𝐿𝑆 ] (1)

That is, for a mini-batch, the hidden representations of the samples

can be defined as: B = {𝒉𝑖 }𝑁𝑏

𝑖=1
, 𝑁𝑏 is the size of mini-batch.

3.3.2 Hierarchical Contrastive Learning. Contrastive learning is

designed to learn with a pair-based contrastive loss function, allow-

ing the representation of a given anchor data to be similar to the

positive data and dissimilar to the negative data, such as the super-

vised contrastive learning loss proposed by Khosla et al. [20] and

the NT-Xent loss used in [5]. For each mini-batch B, the general

contrastive loss function is formulated as:

ℓ𝑖, 𝑗 = −log
exp(𝑧𝑖 , 𝑧 𝑗/𝜏)∑𝑁𝑏

𝑘=1
1[𝑘≠𝑖 ]exp(𝑧𝑖 , 𝑧𝑘/𝜏)

(2)

where 𝑧𝑖 is the anchor, 1[𝑘≠𝑖 ] ∈ {0, 1} is an indicator function

evaluating to 1 iff 𝑘 ≠ 𝑖 , 𝜏 denotes a temperature parameter.

Further, Wang and Liu [39] has demonstrated that the hardness-

aware property is significant to the success of contrastive loss, and

the temperature parameter 𝜏 is a key factor to control the strength

of penalties on hard negative samples in contrastive learning. Con-

trastive loss with small temperature tends to penalize much more on

1
In Section 5.1, we analyze the results using different methods for identifying target-

related words, and find no significant performance difference among them. Neverthe-

less, using topic model achieves slightly better results.

the hardest negative samples such that the local structure of each

sample tends to be more separated, and the embedding distribution

is likely to be more uniform.

Motivated by these, we devise a novel hierarchical contrastive

learning loss to take into account both the types of stance features

and the information of stance labels. We first make contrastive

representations between target-invariant and target-specific stance

features in the latent distribution space. Based on it, for the latent

space of each stance feature role, we further perform contrastive

learning among the stance labels. This allows the contrastive rep-

resentations of stance information to be thought over when pref-

erentially performing the contrastive learning of stance feature

types. More concretely, we explore two temperature parameters

with different values regarding the hierarchical contrastive loss.

This aims to make the aggregation and separation in the latent

space of the stance features types sharply clearer via a smaller tem-

perature parameter 𝜏 , and simultaneously grasping the correlation

and difference among different stance labels without disturbing the

latent space of the types via a larger temperature parameter 𝜏 .

To be specific, for an 𝑎𝑛𝑐ℎ𝑜𝑟 𝒉𝑖 , we refer to 𝒉𝑖 ,𝒉 𝑗 ∈ B with

the same augmentation label of pretext task (the role of stance

features) as a 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 pair, i.e. 𝑝𝑖 = 𝑝 𝑗 , and with the

same stance polarity as a 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 pair, i.e. 𝑦𝑖 = 𝑦 𝑗 . The

samples {𝒉𝑘 ∈ B, 𝑘 ≠ 𝑖} are treated as 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 instances regarding
this 𝑎𝑛𝑐ℎ𝑜𝑟 . Note that, the contrastive loss is computed across all

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 pairs, both (𝒉𝑖 ,𝒉 𝑗 ) and (𝒉 𝑗 ,𝒉𝑖 ) in a mini-batch. Then, we

extend the contrastive loss of Eq. 2 and define the hierarchical

contrastive loss of each mini-batch B as:

Lℎ𝑐 =
−1
𝑁𝑏

∑︁
𝒉𝑖 ∈B

ℓ (𝒉𝑖 ) (3)

ℓ (𝒉𝑖 ) = log

(∑𝑁𝑏

𝑗=1
1[ 𝑗≠𝑖 ]1[𝑝𝑖=𝑝 𝑗 ] 𝑓 (𝒉𝑖 ,𝒉 𝑗 )∑𝑁𝑏

𝑘=1
1[𝑘≠𝑖 ] 𝑓 (𝒉𝑖 ,𝒉𝑘 )

× 𝛼
∑𝑁𝑏

𝑗=1
1[ 𝑗≠𝑖 ]1[𝑝𝑖=𝑝 𝑗 ]1[𝑦𝑖=𝑦 𝑗 ]𝑔(𝒉𝑖 ,𝒉 𝑗 )∑𝑁𝑏

𝑘=1
1[𝑘≠𝑖 ]1[𝑝𝑖=𝑝𝑘 ]𝑔(𝒉𝑖 ,𝒉𝑘 )

) (4)

𝑓 (𝒖, 𝒗) = exp(𝑠𝑖𝑚(𝒖, 𝒗)/𝜏𝑝 ) (5)

𝑔(𝒖, 𝒗) = exp(𝑠𝑖𝑚(𝒖, 𝒗)/𝜏𝑦) (6)

where 1[𝑖=𝑗 ] ∈ {0, 1} is an indicator function evaluating to 1 iff

𝑖 = 𝑗 . 𝑠𝑖𝑚(𝒖, 𝒗) = 𝒖⊤𝒗/∥𝒖∥∥𝒗∥ denotes the cosine similarity be-

tween 𝐿2 normalized vectors 𝒖 and 𝒗. 𝛼 , 𝜏𝑝 , and 𝜏𝑦 are tuned hyper-

parameters to control the separable strength between positive and

negative samples from augmentation labels and stance labels. Here,

𝜏𝑝 < 𝜏𝑦 . In this way, the novel contrastive learning scenario prefer-

entially pulls together the clusters of points belonging to the same

augmentation label in embedding space, and further slightly pulls

together the clusters of points belonging to the same stance polarity

in each separated embedding space. Simultaneously, pushing apart

clusters of samples from different augmentation labels.

3.3.3 Stance Classifier. We first feed the hidden vectors of the

mini-batch B = {𝒉𝑖 }𝑁𝑏

𝑖=1
into a classifier with a softmax function to

produce the predicted stance distribution:

�̂�𝑖 = softmax(𝑾𝒉𝑖 + 𝒃) (7)
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Table 2: Statistics of Vast dataset.

Train Dev Test

# Examples 13477 2062 3006

# Unique Comments 1845 682 786

# Zero-shot Topics 4003 383 600

# Few-shot Topics 638 114 159

Table 3: Statistics of Sem16 andWtwt datasets.

Dataset Target Favor Against Neutral Unrelated

Sem16

DT 148 299 260 -

HC 163 565 256 -

FM 268 511 170 -

LA 167 544 222 -

A 124 464 145 -

CC 335 26 203 -

Wt-wt

CA 2469 518 5520 3115

CE 773 253 947 554

AC 970 1969 3098 5007

AH 1038 1106 2804 2949

where �̂�𝑖 ∈ R𝑑𝑦 is the predicted stance probability of the input

instance 𝑥𝑖 , 𝑑𝑦 is the dimensionality of stance labels.𝑾 ∈ R𝑑𝑦×𝑑𝑚
and 𝒃 ∈ R𝑑𝑦 are trainable parameters.

Based on the predicted stance probability, we adopt a cross-

entropy loss between predicted and ground-truth distribution 𝒚𝑖 of
instance 𝑥𝑖 to train the classifier:

L𝑐𝑙𝑎𝑠𝑠 = −
𝑁𝑏∑︁
𝑖=1

𝑑𝑝∑︁
𝑗=1

𝑦
𝑗
𝑖
log𝑦

𝑗
𝑖

(8)

3.4 Training and Inference

3.4.1 Training. The learning objective of our proposed model is to

train the model by jointly optimizing a supervised loss of stance

detection L𝑐𝑙𝑎𝑠𝑠 with a contrastive loss of pretext task Lℎ𝑐 . The
overall loss L is formulated by summing up three losses together:

L = 𝛾𝑐L𝑐𝑙𝑎𝑠𝑠 + 𝛾ℎLℎ𝑐 + 𝜆 | |Θ| |2 (9)

𝛾𝑐 and 𝛾ℎ are tuned hyper-parameters. Θ denotes all trainable pa-

rameters of themodel, 𝜆 represents the coefficient of𝐿2-regularization.

3.4.2 Inference. For a testing example, we first conduct Eq. 1 to

derive the hidden representation 𝒉𝑡 of the example. Further, the

hidden representation𝒉𝑡 is fed into thewell-trainedPT-HCL frame-

work and obtain the predicted stance distribution �̂�𝑡 towards 𝒉𝑡
through Eq. 7. Finally, we utilize argmax(·) function to output the

label index 𝑜𝑡 of the example: 𝑜𝑡 = argmax(�̂�𝑡 ).

4 EXPERIMENTAL SETUP

4.1 Experimental Data

We conduct the experiments on the following three zero-shot stance

detection (ZSSD) datasets:

Vast [1]. This dataset contains a large amount of variable topics

(targets). Each instance consists of a sentence 𝑟 , a target 𝑡 , and a

stance polarity𝑦 (“Pro”, “Con”, or “Neutral”) towards 𝑡 . Following [1],
we also conduct experiments over few-shot condition, where the

development and test sets consist of very few training targets. The

statistics of dataset are shown in Table 2.

Sem16 [27]. This dataset contains 6 pre-defined targets across

multiple domains. Including Donald Trump (DT), Hillary Clinton
(HC), Feminist Movement (FM), Legalization of Abortion (LA), Athe-
ism (A), and Climate Change (CC). Each instance could be classified

as Favor, Against or Neutral. Following [2], we regard a target as the
zero-shot testing target while train on the other five, and randomly

select 15% of the training set as the development data to tune the

hyper-parameters. The statistics of dataset are shown in Table 3.

Wt-wt [8]. This dataset contains 4 targets in discussing mergers

and acquisition operations between companies. Including CVS_AET
(CA), CI_ESRX (CE), ANTM_CI (AC), and AET_HUM (AH). Each

instance refers to a stance label of Support (corresponding to Fa-
vor), Refute (corresponding to Against), Comment (corresponding to
Neutral), or Unrelated. Following [8], we regard each target as the

zero-shot testing target while training on the other three. We also

randomly select 15% of the training set as the development data.

The statistics of dataset are shown in Table 3.

4.2 Experimental Implementation

4.2.1 Training Settings. We use the pre-trained uncased BERT-

base [9] as the encoder with 768-dimensional embedding, and

the learning rate is 5𝑒−6. Following [43], the coefficient of 𝐿2-

regularization 𝜆 is set to 1𝑒−5. Adam is utilized as the optimizer.

The mini-batch is set to 16. For contrastive loss, we set the hyper-

parameters 𝜏𝑝 = 0.07, 𝜏𝑦 = 0.14, 𝛼 = 0.5, 𝛾𝑐 = 0.8 and 𝛾ℎ = 1.

They are the optimal hyper-parameters in the pilot studies
2
. We

use latent Dirichlet allocation (LDA) [4] to generate topic words

for each target. According to the average data amount of targets,

we set𝑇 = 1 for Vast dataset, and set𝑇 = 10 for Sem16 andWt-wt

datasets. We select the top 𝐾 = 10 words for each topic and delete

the duplicates to capture the topic words for each target, which

achieves superior performance in the pilot studies.
3
. We apply early

stopping in training process with 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 5. The reported results

are averaged scores of 10 runs to obtain statistically stable results
4
.

4.2.2 Evaluation Metric. For Vast dataset, following [1], we per-

form Macro-averaged F1 of each label to measure the testing per-

formance of the models. For Sem16 dataset, following [2], we report

𝐹𝑎𝑣𝑔 : the average of F1 on Favor and Against. ForWt-wt dataset,

following [8], we report the Macro F1 score of each target.

4.3 Comparison Models

We compare our model with several strong baselines, including

neural network-based method: BiCond [3], attention-based model:

CrossNet [43], knowledge-based method: SEKT [45], graph net-

work method: TPDG [23], adversarial learning method: TOAD [2],

and BERT-based methods: BERT [9], TGA Net [1], BERT-GCN [24],

2
Note that 𝜏𝑝 can be set to 𝜏𝑝 ∈ [0.05, 0.1], 𝜏𝑦 can be set to 𝜏𝑦 ∈ [0.1, 0.2], and 𝛼
can be set to 𝛼 ∈ [0.1, 0.5], which can also achieve state-of-the-art performance.

3
In preliminary experiments, we set𝑇 ∈ [1, 50] and 𝐾 ∈ [10, 50] to generate topic

words, and found that the fluctuation of performance is negligible. Thus, the impact

on performance is slight as long as the values are taken within a reasonable range.

4
The source code of this work is released at https://github.com/HITSZ-HLT/PT-HCL.

https://github.com/HITSZ-HLT/PT-HCL
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Table 4: Experimental results on three ZSSD datasets. The results with ♮ are retrieved from [1], with † are retrieved from [24],

with ‡ are retrieved from [2], with ♯ are retrieved from [8], with ♭ are retrieved from [23], with ∗ indicates significance tests of
our PT-HCL over BERT, TGA Net, CKE-Net, and PET (with 𝑝 < 0.05). Best scores are in bold.

Model

Vast (%) Sem16 (%) Wt-wt (%)

Pro Con Neu All DT HC FM LA A CC CA CE AC AH

BiCond [3] 44.6
♮

47.4
♮

34.9
†

42.8
♮

30.5
‡

32.7
‡

40.6
‡

34.4
‡

31.0
‡

15.0
‡

56.5
♯

52.5
♯

64.9
♯

63.0
♯

CrossNet [43] 46.2
♮

43.4
♮

40.4
†

43.4
♮

35.6 38.3 41.7 38.5 39.7 22.8 59.1
♯

54.5
♯

65.1
♯

62.3
♯

SEKT [45] 50.4
†

44.2
†

30.8
†

41.8
†

- - - - - - - - - -

TPDG [23] 53.7 49.6 52.3 51.9 47.3 50.9 53.6 46.5 48.7 32.3 66.8
♭

65.6
♭

74.2
♭

73.1
♭

TOAD [2] 42.6 36.7 43.8 41.0 49.5
‡

51.2
‡

54.1
‡

46.2
‡

46.1
‡

30.9
‡

55.3 57.7 58.6 61.7

BERT [9] 54.6
♮

58.4
♮

85.3
†

66.1
♮

40.1
‡

49.6
‡

41.9
‡

44.8
‡

55.2
‡

37.3
‡

56.0
♭

60.5
♭

67.1
♭

67.3
♭

TGA Net [1] 55.4
♮

58.5
♮

85.8
†

66.6
♮

40.7 49.3 46.6 45.2 52.7 36.6 65.7 63.5 69.9 68.7

BERT-GCN [24] 58.3
†

60.6
†

86.9
†

68.6
†

42.3 50.0 44.3 44.2 53.6 35.5 67.8 64.1 70.7 69.2

CKE-Net [24] 61.2
†

61.2
†

88.0
†

70.2
†

- - - - - - - - - -

PET [32] 54.4 50.6 36.6 47.2 48.6 53.9 52.3 48.7 46.8 32.3 71.6 66.7 73.7 74.5

PT-HCL (ours) 61.7
∗

63.5
∗

89.6
∗

71.6
∗

50.1
∗

54.5
∗

54.6
∗

50.9
∗

56.5
∗

38.9
∗

73.1
∗

69.2
∗

76.7
∗

76.3
∗

-contrastive 57.6 59.7 87.3 68.2 43.4 50.8 44.5 45.5 54.9 37.6 69.3 66.1 73.9 72.5

w/ tf-idf 61.4 62.9 89.4 71.2 49.7 53.5 53.8 50.7 56.1 38.2 71.9 68.8 76.4 75.7

w/ similarity 61.1 63.2 89.0 71.1 49.3 54.2 54.4 49.8 55.7 38.6 72.6 67.7 75.9 76.0

and CKE-Net [24].We also comparewith a prompt-basedmethod ex-

ploited in stance detection: Pattern-Exploiting Training (PET) [32].
In addition, we provide several variants of our proposed PT-HCL.

“-contrastive” representswithout using contrastive learning. This
variant regards the pretext task and stance detection as a super-

vised multi-task learning. The Eq. 9 is replaced with: L = L𝑐𝑙𝑎𝑠𝑠 +
L𝑝 + 𝜆 | |Θ| |2. Here L𝑝 is the cross-entropy loss of pretext task. “w/
tf-idf” represents using TF-IDF to generate target-related words

paired with weights. “w/ similarity” denotes determining the

target-related words and weights via the embedding similarity be-

tween words and the target. Based on it, we select the 10 words

with the highest weight for each target as masked candidates.

Further, we also design various varieties of the proposed PT-HCL
o analyze the impact of different components in the ablation study.

“w/o 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠” denotes without deriving masked candidates to

generate masked sentences. Inspired by [9], this variant randomly

masks 15% of words in each sentence to generate masked sentences

for the self-supervised learning pretext task. “w/o L𝑡𝑦𝑝𝑒 ” denotes
without using contrastive loss of pretext task to distinguish the

types of stance features in the latent space. This variant only uses

stance label as supervised signal in contrastive learning, i.e. Eq. 4

is replaced by Eq. 10. “w/o L𝑠𝑡𝑎𝑛𝑐𝑒” denotes without stance con-
trastive information in Eq. 4. “w/o Lℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 ” denotes without
using hierarchical scenario, i.e. Eq. 4 is replaced by Eq. 11.

ℓ (𝒉𝑖 ) = log

∑𝑁𝑏

𝑗=1
1[ 𝑗≠𝑖 ]1[𝑦𝑖=𝑦 𝑗 ] 𝑓 (𝒉𝑖 ,𝒉 𝑗 )∑𝑁𝑏

𝑘=1
1[𝑘≠𝑖 ] 𝑓 (𝒉𝑖 ,𝒉𝑘 )

(10)

ℓ (𝒉𝑖 ) = log

∑𝑁𝑏

𝑗=1
1[ 𝑗≠𝑖 ]1[𝑝𝑖=𝑝 𝑗 ] 𝑓 (𝒉𝑖 ,𝒉 𝑗 )∑𝑁𝑏

𝑘=1
1[𝑘≠𝑖 ] 𝑓 (𝒉𝑖 ,𝒉𝑘 )

+ log

∑𝑁𝑏

𝑗=1
1[ 𝑗≠𝑖 ]1[𝑦𝑖=𝑦 𝑗 ] 𝑓 (𝒉𝑖 ,𝒉 𝑗 )∑𝑁𝑏

𝑘=1
1[𝑘≠𝑖 ] 𝑓 (𝒉𝑖 ,𝒉𝑘 )

(11)

5 EXPERIMENTAL RESULTS

5.1 Main Experimental Results

We report the main experimental results of zero-shot stance de-

tection on three benchmark datasets in Table 4. We observe that

our PT-HCL performs consistently better than all baseline models

on all datasets, which verifies the effectiveness of our proposed

approach in ZSSD. Further, the significance tests of our PT-HCL over
BERT, TGA Net, CKE-Net, and PET show that our PT-HCL presents
a statistically significant improvement in terms of all evaluation

metrics (with 𝑝 < 0.05).

Furthermore, comparedwith the adversarial learning-basedmodel

(TOAD) that performs poorly in Vast and Wt-wt datasets, our

PT-HCL achieves outstanding performance. This demonstrates that

method that exploits the discriminator in an adversarial learning

way can not well identify the target information when the distribu-

tion of targets is imbalanced, while our PT-HCL can make good use

of the differences and similarities between different targets in the

light of the contrastive learning and thus leads to improved per-

formance. In addition, in comparison with the vanilla BERT model,

both our PT-HCL and -contrastive (the variant of our PT-HCL that

without contrastive learning) achieve outstanding improvement.

This indicates that exploring a self-supervised learning pretext task

to derive supervised signal of target-invariant stance features is

effective in leveraging shared stance features for the previously

unseen targets, and thus leads to improved ZSSD performance. Fur-

ther, our PT-HCL significantly outperforms -contrastive in terms

of all evaluation metrics. This demonstrates the significance and

validity of our proposed contrastive learning approach in ZSSD. Ac-

cording to the results of using different methods to derive masked

candidates, we conclude that different methods lead to a slight im-

pact on performance, and topic model used in our PT-HCL performs

slightly better. This verifies the generalizability and effectiveness

of our proposed method about determining target-related words

for deriving masked candidates.

gaozhaoze
高亮文本
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Table 5: Experimental results of ablation study.

Model

Vast (%) Sem16 (%) Wt-wt (%)

Pro Con Neu All DT HC FM LA A CC CA CE AC AH

PT-HCL 61.7 63.5 89.6 71.6 50.1 54.5 54.6 50.9 56.5 38.9 73.1 69.2 76.7 76.3

w/o 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 56.2 60.4 86.5 67.7 43.6 49.7 44.3 46.3 53.7 37.1 67.5 64.7 71.8 71.2

w/o L𝑡𝑦𝑝𝑒 58.6 61.0 87.3 69.0 45.0 50.3 48.1 47.3 54.1 37.4 68.2 67.0 72.3 72.4

w/o L𝑠𝑡𝑎𝑛𝑐𝑒 60.6 62.3 88.4 70.4 49.6 51.7 52.3 48.9 55.7 38.3 71.3 68.6 75.5 74.8

w/o Lℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 59.2 61.7 88.5 69.8 46.2 51.6 47.8 46.6 54.4 37.8 69.9 67.1 74.2 73.0

Figure 3: Visualization of contrastive representation of check-

points from every 50 training steps. The darker the color of

the point, the greater the accuracy. The arrows indicate the

training direction. Models with low L𝑎𝑙𝑖𝑔𝑛 and L𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 con-

sistently perform well (lower left corner).

5.2 Ablation Study

To investigate the impact of different components on performance,

we conduct an ablation study of the proposed PT-HCL and report

the results in Table 5. We observe that removal of masked candi-

dates (“w/o 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠”) sharply degrades the performance, which

verifies the effectiveness and significance of deriving target-related

words as masked candidates for each target, and thus capturing

high-quality masked instances to perform a pretext task. From the

results of “w/o L𝑡𝑦𝑝𝑒 ”, we conclude that distinguishing the types of
stance features in the latent space are valid to improve the learning

of transferable stance features in ZSSD. In addition, the performance

declines considerably when the stance information is not consid-

ered in the contrastive loss (“w/o L𝑠𝑡𝑎𝑛𝑐𝑒 ”), which implies that the

information of stance label is also an important supervised signal

when performing contrastive learning. Further, note that removal

of hierarchical scenario in contrastive loss (“w/o Lℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 ”)
leads to an evident decline in performance. This indicates that hier-

archical contrastive loss is much superior in improving the quality

of the learned feature representation. One possible reason is that

placing pretext task and stance label on the same level in designing

contrastive loss may lead to mutual conflict. As such, we explore a

novel hierarchical contrastive loss to relieve the conflict between

types and labels for better performance in ZSSD.

Table 6: Experimental results of few-shot scenario. Results

of baselines are retrieved from [24].

Model Pro Con Neu All

BiCond [3] 45.4 46.3 25.9 39.2

Cross-Net [43] 50.8 50.5 41.0 47.4

SEKT [45] 51.0 47.9 21.5 47.4

BERT [9] 54.4 59.7 79.6 64.6

TGA Net [1] 58.9 59.5 80.5 66.3

BERT-GCN [24] 62.8 63.4 83.0 69.7

CKE-Net [24] 64.4 62.2 83.5 70.1

PT-HCL 62.3 67.0 84.3 71.2

5.3 Qualitative Analysis

5.3.1 Analysis of Contrastive Representation. To further analyze

how the proposed PT-HCLworks in contrastive representation learn-
ing, we take the checkpoints from -contrastive, the three variants
of PT-HCL, and our complete PT-HCL during training and visualize

the alignment and uniformity metrics in Figure 3. Here, the evalua-

tion and analysis of alignment and uniformity are following [40],

which verifies that models attain both better alignment and unifor-

mity will achieve better performance. From the results, we observe

that our PT-HCL shows lowerL𝑎𝑙𝑖𝑔𝑛 andL𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 during the train-

ing, which demonstrates that our PT-HCL attain strong ability in

contrastive learning. Note that results of -contrastive present the
worst alignment and uniformity, which indicates that contrastive

learning can advance a better latent space for the learned repre-

sentations. In addition, “w/o Lℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙 ” leads to poorer metrics

of both alignment and uniformity, which further verifies the effec-

tiveness and significance of hierarchical strategy in our PT-HCL.
Further, the results of “w/o L𝑡𝑦𝑝𝑒 ” and “w/o L𝑠𝑡𝑎𝑛𝑐𝑒” are worse
than the complete PT-HCL, which implies that both the types of

stance features from the pretext and stance label are important in

learning contrastive representation.

5.3.2 Analysis of Few-Shot Scenario. Following [1, 24], we also

evaluate our framework in the few-shot stance detection scenario

on Vast dataset. The experimental results are shown in Table 6.

Note that our PT-HCL performs overall better than all the compari-

son methods. This verifies the effectiveness and generalizability of

our PT-HCL in dealing with both zero-shot and few-shot conditions.

5.3.3 Analysis of Cross-Target Scenario. We further conduct com-

parison experiments in the cross-target scenario, a special form of

zero-shot, on Sem16 dataset and report the results in Table 7. Note

our PT-HCL framework achieves consistently better performance



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Bin Liang and Zixiao Chen, et al.

Table 7: Experimental results of cross-target scenario.

“HC→DT” denotes training on HC and testing on DT, etc.

Results of baselines are retrieved from [23].

Model HC→DT DT→HC FM→LA LA→FM

BiCond [3] 29.7 35.8 45.0 41.6

CrossNet [43] 43.1 36.2 45.4 43.3

BERT [9] 43.6 36.5 47.9 33.9

SEKT [45] 47.7 42.0 53.6 51.3

TPDG [23] 50.4 52.9 58.3 54.1

PT-HCL 53.7 55.3 59.3 54.6

Table 8: Comparison results of combining our proposed PT-

HCL framework with different stance detection models.

Model Pro Con Neu All

BiCond [3] 44.6 47.4 34.9 42.8

+PT-HCL 52.1 57.5 45.8 51.8

Cross-Net [43] 46.2 43.4 40.4 43.4

+PT-HCL 56.5 60.1 52.4 56.3

TGA Net [1] 55.4 58.5 85.8 66.6

+PT-HCL 60.9 61.6 86.4 69.6

BERT-GCN [24] 58.3 60.6 86.9 68.6

+PT-HCL 63.6 64.8 87.8 72.1

on all cross-target conditions, which verifies that our PT-HCL can
generalize the superior learning ability to cross-target scenario.

In addition, combining the results of Table 4, we observe that the

results of cross-target scenario are overall better than ZSSD. This

indicates that recognizing the relationships among targets in ad-

vance can potentially improve the stance detection performance

for the unseen targets, and while showing the challenge of ZSSD.

5.3.4 Analysis of Different Encoders. In this section, we replace

the BERT-based encoder in our PT-HCL with several strong neural

network-based baselines and conduct experiments on Vast dataset.

The comparison results are shown in Table 8. Note that all stance

detection baselines can be directly combined with our proposed con-

trastive learning scenario and achieve outstanding improvement.

This verifies the generalizability and effectiveness of the proposed

contrastive learning strategy of our PT-HCL in ZSSD.

5.3.5 Analysis of the Pretext Task. We then make statistics on the

prediction results of masked sentences on three datasets, and find

that the probability intervals of correct results are 53%-56% on

Vast dataset, 76%-85% on Sem16 dataset, and 67%-71% onWt-wt

dataset, respectively. This indicates that the prediction results of

a considerable number of masked instances are unchanged, and

thus those instances could be regarded as target-invariant stance

expressions for learning transferable stance features in ZSSD.

5.4 Visualization

To qualitatively demonstrate how the proposed hierarchical con-

trastive learning strategy works in improving the quality of learned

representations, we present the t-SNE [38] visualization of inter-

mediate vectors learned by our PT-HCL and BERT on Vast dataset.

The results are shown in Figure 4. Figure 4 (a) demonstrates that

(a) Training data (b) Testing data (c) BERT

Figure 4: Visualizations of intermediate vectors learned

by our PT-HCL (a) and (b) and the vanilla BERT (c).

Red=Pro, blue=Con, green=Neu. In (a), cross=target-invariant,
dot=target-specific.

representations belonging to the same pretext label are pulled to-

gether, while the separation of representations between different

pretext labels is quite clear. Further, within each embedding space

of pretext label, the representation distributions among different

stance labels are diverse. These results verify the effectiveness of

the hierarchical contrastive learning in refining the distributions of

learned representations. In addition, the visualizations of Figure 4

(b) and (c) present that the separations of testing data represen-

tations among different stance labels learned by our PT-HCL are

considerably more apparent than the vanilla BERT. This implies

that the PT-HCL can learn sounder inductive information from the

training data owing to the hierarchical contrastive learning, so as

to preferably generalize transferable stance features to the unseen

targets and thus improve the performance of ZSSD.

6 CONCLUSION

This paper presents a novel hierarchical contrastive learning frame-

work based on the supervised information of labels and the sur-

rogate supervised signal provided by a self-supervised learning

pretext task in zero-shot stance detection (ZSSD), called PT-HCL.
To be specific, we devise a novel hierarchical contrastive learning

strategy to leverage the correlation and difference between target-

invariant and target-specific stance representations, and further

provide insights and discrimination into the distribution space of

representations among different stance labels. This essentially al-

lows the model to improve the quality of learned representations

for learning transferable stance features in dealing with ZSSD. Ex-

perimental results on three benchmark datasets demonstrate that

the proposed PT-HCL consistently outperforms the state-of-the-art

baseline models in ZSSD task.
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