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ABSTRACT
Within online platforms, it is critical to capture the semantics of
sequential user behaviors for accurately modeling user interests.
However, dynamic characteristics and sparse behaviors make it
difficult to learn effective user representations for sequential user
behavior modeling.

Inspired by the recent progress in contrastive learning, we pro-
pose a novel Contrastive Curriculum Learning framework for pro-
ducing effective representations for modeling sequential user be-
haviors. We make important technical contributions in two aspects,
namely data quality and sample ordering. Firstly, we design a model-
based data generator by generating high-quality samples confirm-
ing to users’ attribute information. Given a target user, it can lever-
age the fused attribute semantics for generating more close-to-real
sequences. Secondly, we propose a curriculum learning strategy to
conduct contrastive learning via an easy-to-difficult learning pro-
cess. The core component is a learnable difficulty evaluator, which
can score augmented sequences, and schedule them in curriculums.
Extensive results on both public and industry datasets demonstrate
the effectiveness of our approach on downstream tasks.
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1 INTRODUCTION
Recent years have witnessed the great success of many online plat-
forms, such as Amazon and Tencent. On online platforms, users’
behaviors are highly dynamic and evolving over time. Thus it is
critical to capture the dynamics of sequential user behaviors for
modeling user interests. To copewith this problem, variousmethods
have been proposed to learn user representation for making accu-
rate prediction such as sequential recommendation and attribute
prediction based on historical interactions [14, 17].

As a major technical approach, sequential modeling methods [13,
31, 44] aim to capture sequential patterns or characteristics under-
lying users’ historical behaviors. Such a motivation has been exten-
sively explored with the recent progress of deep learning. A number
of studies have adopted recurrent neural networks (RNNs) [7], con-
volutional neural networks (CNNs) [32], and self-attention mech-
anisms [17] to learn good representations of user preference by
effectively modeling historical behavior sequences.

Although existing methods show performance improvement,
they rely on the loss of the downstream task to learn the model
architecture. It is found that such an optimization way is easy to
suffer from issues such as data sparsity [11, 30]. Similar issues are
also raised in other domains, such as natural language processing
and computer vision. In recent years, many efforts have been de-
voted to tackling this challenge [3, 6]. A mainstream technique is
the pre-training paradigm, which first pre-trains the model on a
large unlabeled corpus and then fine-tunes the model with super-
vised labels from downstream tasks. In order to better leverage
intrinsic data correlations for pre-training, contrastive learning is
proposed to improve the sequence modeling [34, 49]. It conducts
data augmentation to obtain different data views, and learns the
correlation between different views to enhance the representation.

However, there are two major issues when applying contrastive
learning in the sequential modeling task. First, the data quality of
augmented sequences directly influences the learning performance.
Existing methods mainly adopt heuristic strategies for data aug-
mentation, and it is difficult to guarantee the data quality. Second,
in representation space, the augmented instances are not evenly
generated in the entire semantic space. They are likely to be with
different difficulty levels (e.g., how easy it is accurately distinguished
in representations) for the learner. Therefore, a random sample
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ordering (a concept from curriculum learning [1]) with augmented
data is likely to yield the performance degeneration in practice [16].

To this end, the key challenges of contrastive learning for se-
quential modeling can be summarized in two aspects, namely data
quality and sample ordering of the augmented sequences. For data
quality, we consider designing a model-based data generator by
learning to generate more controllable samples. Since our task is re-
lated to user modeling, the generator is able to augment sequences
confirming to users’ attribute information. For sample ordering,
we believe the learning process should be scheduled in an easy-
to-difficult process, so that the model capacity can be gradually
improved. Therefore, we incorporate a novel curriculum learning
strategy by evaluating sample difficulty and scheduling their order.

In this paper, we propose a novel Contrastive Curriculum Learn-
ing (CCL) framework for producing effective representations for
modeling sequential user behaviors. The basic idea of our approach
is to generate high-quality augmented data for contrastive learning
and conduct the contrastive curriculum learning via an easy-to-
difficult training process. Firstly, we develop a context-aware data
generator based on the Transformer architecture for data augmen-
tation. Secondly, we design a difficulty evaluator to score the aug-
mented sequences, and schedule them in an easy-to-difficult order.
Finally, we propose a curriculum learning strategy to conduct con-
trastive learning via the elaborately designed curriculum. Putting
the three key steps together, our approach is able to gradually
improve the learned user representations.

To the best of our knowledge, it is the first time that contrastive
curriculum learning has been applied for sequential user modeling.
To validate the effectiveness of our approach, we conduct extensive
experiments with downstream tasks, namely user activity predic-
tion, item recommendation and user attribute prediction. Experi-
mental results on both public and industry datasets show that our
approach is more effective than a number of competitive methods.

2 RELATEDWORK
In this section, we summarize the related work in three fields.

Sequential User Behavior Modeling. Sequential user behavior
modeling, which captures user preferences from behavior data, is
critically important since it contributes significant improvement
for real-world applications. As a major direction, many methods [7,
12, 29] in recommender systems have been proposed by construct-
ing user models on user behavior data. Early work mostly focus
on Markov chain [26] models. They employ Markov decision pro-
cesses in the recommender system to provide recommendations
using sequential information. With the success of deep learning,
researchers adopt deep neural network [14, 31] to model sequential
dynamics. Recently, self-attention attains promising results in vari-
ous sequential behavior modeling tasks. Kang and McAuley [17]
firstly adopt the self-attention mechanism for sequential user be-
havior modeling. Besides that, Many sequence modeling methods
have also been applied to user privacy protection [52], user activity
prediction [53] and user retention analysis [8].

Curriculum Learning. Curriculum learning is a learning para-
digm that starts from simple patterns and gradually increases to
more complex patterns. This idea is inspired by the human learning

process. Bengio et al. [1] examine curriculum learning and demon-
strate empirically that such curriculum approaches indeed help
decrease training times and sometimes even improve generaliza-
tion. Curriculum learning has also been applied to many tasks. Jiang
et al. [15] manage curriculum learning as an optimization problem.
Sachan and Xing [27] apply self-paced learning for neural question
answering. Tay et al. [33] propose curriculum pointer-generator
networks for reading comprehension over long narratives. Platanios
et al. [25] apply curriculum learning for neural machine translation,
aiming to reduce the need for specialized training heuristics and
boost the performance of existing systems. In our work, our ap-
proach is closely related to [25, 33], where a curriculum is formed
via two steps: first evaluating the difficulty, then sampling the ex-
amples into batches accordingly.

Contrastive Learning. Contrastive learning, which aims to learn
high-quality representation via a self-supervised manner, recently
achieves remarkable successes in various fields [2, 50]. The common
motivation behind these work is the InfoMax principle [37], which
we here instantiate as maximizing the mutual information (MI)
between two views [43]. It learns discriminative representations
by contrasting positive and negative samples. In natural language
processing, the most classic model Word2vec [24] uses co-occurring
words and negative sampling to learn word embeddings. To effi-
ciently learn sentence representations, Logeswaran and Lee [21]
treat the context sentences as positive samples and the others as
negative samples to optimize a contrastive loss. In computer vision,
a large collection of work [9, 22] learns self-supervised image rep-
resentation by minimizing the distance between two views of the
same image. Its effectiveness has been verified in multiple tasks,
including shape recognition and object classification.

Different from these studies, our work proposes a novel con-
trastive curriculum learning approach for user representation. We
design a context-aware data augmentation strategy suitable for
user sequential behavior, by which the augmented instances are
more “close-to-real”. Also, we propose a curriculum learning strat-
egy to conduct contrastive learning via an easy-to-difficult learning
process to further enhance the user representation.

3 PRELIMINARIES
In this section, we first formulate the problem statement and then
introduce the base model for sequential user modeling.

3.1 Problem Statement
In this part, we present the used notations throughout the paper,
and define our task.

LetU denote a user set and I denote an item set. We consider
the sequential interaction scenario between users and items. On an
online platform, a user usually interacts with a number of items at
different timestamps. Therefore, in chronological order, we denote
the interaction sequence for user u as su = i1 → · · · → it →

· · · → in , where it is the item that u has interacted with at step t
and n is the length of interaction records for user u. Besides, each
user is associated with several attributes (e.g., occupation, city and
interest), denoted by Au = {a1, · · · ,ak }.

To further enhance the user representation, our core approach
is to produce a set of augmented sequence data, which would be
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utilized in the pre-training phase. Specifically, for each user u, we
apply the augmentation method (see Section 4.1) to the original
user interaction sequence su and obtain augmented sequence data,
denoted by Zu = {z1, · · · , zj , · · · , zm }, where zj denotes the j-
th augmented sequence for user u and m is the number of aug-
mented sequences. Each augmented sequence zj represents similar
or related semantics for su , which aim to enhance the semantic
representation for user u.

Based on the above notations, given both sequential data su and
augmented sequential data Zu , our aim is to learn an effective
d-dimensional representation for user u, denoted byvu ∈ Rd . We
expect the learned user representation can capture user interests or
sequential behavior characteristics, which can potentially improve
various downstream applications.

3.2 Base Model for Sequential User Behavior
For modeling sequential user behaviors, we develop the base model
by following the Transformer architecture [35], including the em-
bedding layer and the primary Transformer module, which has
been shown to be effective in modeling sequential data [17].

3.2.1 Attribute-Specific Embedding Layer. In original Transformer
network, the original embedding layer contains item embedding
and position embedding at each position. In our work, we would
like to inject useful attribute information for enhancing the se-
quential modeling. Given the attribute set Au of user u, we map
each attribute from Au into a d-dimensional embedding. Since
a user is usually associated with multiple attributes, we perform
the average-pooling operation to obtain the attribute-based rep-
resentation au ∈ Rd for user u. We further concatenate au in n
times (sequence length), and derive an attribute embedding matrix
A ∈ Rn×d for input. In order to enhance the effect of user attribute
information, we add the attribute embedding at each position:

EI = I + P + A, (1)

where I ∈ Rn×d is the item embedding matrix obtained by the
look-up operation, P ∈ Rn×d is a position embedding matrix cal-
culated by sinusoidal function [35], and A = [au ]n is the attribute
embedding matrix repeating the attribute embedding au by n times.

3.2.2 Transformer Module. Based on the above embedding layer,
we develop the Transformer module and produce user representa-
tion u. Generally, the Transformer module is composed by multi-
head self-attention (MHA) block and point-wise feed-forward net-
work. The MHA block has been adopted for effectively extracting
the information selectively from different representation subspaces.
Specifically, the multi-head self-attention is defined as:

MHA(Fl ) = [head1,head2, ...,headh ]W
O , (2)

headi = Attention(FlWQ
i , F

lWK
i , F

lWV
i ), (3)

where the Fl is the input for the l-th layer. When l = 0, the input
F0 is set to EI (Eq. 1), and the projection matrix WQ

i ∈ Rd×d/h ,
WK

i ∈ Rd×d/h ,WQ
V ∈ Rd×d/h andWO ∈ Rd×d are the correspond-

ing learnable parameters for each attention head. The attention
function is implemented by scaled dot-product operation. Further-
more, we endow the non-linearity of the self-attention block by

applying a point-wise feed-forward network:

Fl = [FFN(Fl1)
⊤; · · · ; FFN(Fln )⊤], (4)

FFN(x) = (ReLU(xW1 + b1))W2 + b2, (5)
whereW1, b1,W2 and b2 are trainable parameters. In the final layer
of the Transformer layer, we utilize the output of the self-attention
block at the last position as the final user representationvu .

4 APPROACH
Inspired by recent progress of contrastive learning [34, 42] and
curriculum learning [1], we propose a novel Contrastive Curriculum
Learning (CCL) framework for producing effective representations
for modeling sequential user behaviors.

The basic idea of our approach is to generate high-quality aug-
mented data for contrastive learning and conduct the contrastive
curriculum learning via an easy-to-difficult training process. As
major contributions, the augmented sequences can well conform to
user’s attribute information, and our approach is able to schedule
the augmented sequences and learn with the augmented sequences
in increasing difficulty levels.

The overview of the proposed CCL framework is presented in
Figure 1. First, we train a context-aware data generator by injecting
attribute information of a target user, and utilize it to augment new
sequences via the mask-and-fill operation. Second, we propose to
adopt curriculum learning to schedule the augmented sequences
by measuring their difficulty levels. Finally, we design a contrastive
learning objective to enhance user representations in an easy-to-
difficult order of scheduled courses (i.e., augmented sequences).

4.1 Context-aware Data Augmentation
As a major implementation way, contrastive learning usually re-
lies on data augmentation to derive different views of the original
data [3]. Previous approaches utilize heuristic strategies to augment
data such as random item mask [40] or random crop [42]. However,
these heuristic strategies are likely to generate out-of-distribution
instances and may dramatically change the underlying semantics
of the original data [4, 38]. To solve these problems, we propose a
context-aware data augmentation strategy to produce high-quality
augmented sequences adhereing to the attributes of users.

4.1.1 Attribute-enhancedData Generator. Different from other data
augmentation tasks, our focus is to improve user representations
based on the sequential behaviors, thus users’ attributes are im-
portant to consider in our data augmentation strategies. For this
purpose, we firstly develop and train an attribute-enhanced data
generator based on the Transformer architecture in Section 3.2,
which can produce the augmented sequences retaining the attribute
semantics of users. The base model in Section 3.2.1 has involved
user attributes in the embedding layer, and we further propose a pre-
training strategy inspired by masked language model [31] to fuse
attribute information with sequential semantics. Given an item se-
quence su = {i1, · · · , ik , · · · , in } and the associated attributes Au
for useru, we randomly mask a proportion of items in the sequence
and then train the augmentation model by recovering the original
sequence based on its contextual information. For example, if we
mask the item ik , we replace it with a special token “[mask]” and de-
note the masked item sequence as su,¬k = {i1, · · · , [mask], · · · , in }.
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Figure 1: The overall architecture of our proposed approach. The distance of the blue left-right arrow represents the difficulty
score between the original sample and the augmented samples at the lower part.

For themasked item ik , we predict its original ID based on its contex-
tual information, consisting of contextual items su,¬k and attribute
information Au . Formally, following BERT [6], we leverage the
bidirectional contextual information in the masked item sequence
for predicting the masked item as:

P(ik |su,¬k ,Au ) = σ (f ⊤k W1ek ), (6)

where fk is the representation at the k-th position using the bidi-
rectional Transformer based on contextual information (Eq. 4), ek
is the embedding of the masked item ik and σ (.) is the sigmoid
function to obtain the probability. Note that the above training
strategy in Eq. 6 can be directly extended to mask a proportion of
items. In this way, the base model is able to learn the correlations
between the masked item and contextual information (i.e., item
sequence and user attribute), so that it can be used to generate
instances confirming to the original attribute information of users.

4.1.2 Mask-and-Fill Augmentation. Based on the augmentation
model, we propose a mask-and-fill strategy to conduct data aug-
mentation, which is able to generate high-quality sequences retain-
ing original attribute semantics of users. For each user interaction
sequence s , we randomly mask a proportion γ of items, and let M
denote all indices of the masked items. Formally, the mask operation
can be formulated as:

s ′ = дmask(su ) = [i ′1, i
′
2, . . . , i

′
n ], (7)

i ′t =

{
it ∈ su , t <M;
[mask], t ∈ M .

(8)

For each item i ′t in the interaction sequence s ′, we replace it with
the special token “[mask]” if t ∈ M or keep as it is. Next, we obtain
the augmented sequences by filling in the masked positions.

z = дfill(s
′) = [i ′1, i

′
2, . . . , i

′
n ], (9)

i ′t =

{
it ∈ s, t <M;
i ∼ P(·|su,¬k ,Au ), t ∈ M .

(10)

Here, we utilize the pre-trained generator (Eq. 6) to fill in themasked
position, and we sample an item according to the probability in
P(i |su,¬k ,Au ) (Eq. 6). Recall that the pre-training for the gener-
ator considers both sequential patterns and user’s attributes. Our
generator can retain important semantic information from original
sequences. So, the augmented sequences are highly relevant to the
original sequence but also provide different views for learning user
representations.

Based on the above context-aware data generator, for each user,
we can obtain a set of augmented sequences.

4.2 Easy-to-Difficult Course Arrangement
In contrastive learning [34], it relies on the contrastive difference
or similarity to construct the learning objective between different
views of a data instance. Intuitively, for two augmented sequences
from the same sequence, the smaller difference there is, the easier
it is to model the “agreement” on their representations. In other
words, it will be less difficult to learn with more similar augmented
sequences which have fewer modifications in semantics. Actually,
it has been shown the schedule strategy of learning tasks in varied
difficulty levels directly affect the performance of the learner [1, 27].
To quantitatively measure the difficulty levels in our task, we design
a difficulty evaluator for augmented sequences based on the user
attribute recovering task, and then apply it to schedule augmented
sequences into courses from easy to difficult.

4.2.1 Difficulty Evaluator. To measure the difficulty level of each
augmented instance, a straightforward method is to compute the
surface similarity in sequences. However, user behaviors tend to be
very complicated. Even for the same user, she/he might show differ-
ent behavior patterns at different time. Considering this issue, we
design the difficulty evaluator based on a novel task to recover user
attributes. To be specific, we first encode an augmented sequence
z into a d-dimensional embedding vz with the base Transformer
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architecture (Section 3.2), and then fed it into an attribute predictor
according to a softmax layer:

ϕz = Pr(Au |z) = softmax(W⊤
2 ·vz ), (11)

where W2 is a learnable matrix for softmax classification. Here,
ϕz ∈ R |A | is a probability distribution over all the attributes, re-
flecting the confidence scores of the actual attributes in Au . If one
augmented sequence is more capable of recovering the original
user attributes, we assume that it is with a low difficulty level. To
characterize such an idea, we represent the real attributes Au as a
one-hot vector, denoted by θu , where only the attribute dimensions
in Au are set to 1 and the rest entries are set to 0.

Formally, we use the Jensen-Shannon (JS) divergence between
the probability distributions in original data and augmented data
as the difficulty score:

d(z,u) =
1
2KL(θu ∥

ϕz + θu
2 ) +

1
2KL(ϕz ∥

ϕz + θu
2 ), (12)

where ϕz denotes the attribute distribution of the augmented data
from Eq. 11, and θu denotes the attribute distribution of the orig-
inal data. The larger d(z,u) is, the larger difficulty score of the
augmented sequence is, which indicates the augmented sequence
includes more semantic modifications.

4.2.2 Course Design. Based on the difficulty evaluator, we next
distribute the augmented data into a set of courses according to
their difficulty scores from easy to difficult. For each augmented
data, we first calculate its difficulty score via the difficulty evaluator.
Then, all the augmented sequences are sorted in an order of ascend-
ing difficulty scores. We divide the entire augmented data (with
duplicate removal) into N bins consisting of equal-sized augmented
sequences, where a smaller bin corresponds to smaller difficulty
scores. To incorporate local stochastics, we further shuffle the aug-
mented data within each bin. In our approach, we consider a bin
of augmented data as a course. Based on these N courses, we can
construct the learning curriculum with increasing difficulty lev-
els. The model capacity will be gradually improved with such an
elaborately designed curriculum.

4.3 Contrastive Curriculum Learning
Based on the generated courses, we propose a contrastive curricu-
lum learning method to learn user representations via an easy-to-
difficult process. Next, we first introduce the contrastive curriculum
loss function, and then present the detailed learning process.

4.3.1 Contrastive Curriculum Loss Function. In order to learn user
representations, we propose a contrastive curriculum learning
method on the designed courses, via an easy-to-difficult process.
Specifically, ourmodel learns the above course one-by-one, inwhich
we utilize a contrastive learning objective for minimizing the dif-
ference between augmented sequences and the original sequence
given a user. Considering a mini-batch of samples in each learn-
ing stage, we regard original data and augmented data from the
same user as positive samples, and treat other augmented exam-
ples within the same mini-batch as negative samples. We utilize the
cosine similarity to measure the representation similarity:

sim(vu ,vz ) = cos(vu ,vz ) =
v⊤
uvz

|vu ∥∥vz ∥
, (13)

Algorithm 1 The overall learning process of our approach.
Input: User interaction sequence {su } and user attribute {Au }.
Output: The learned user representations vu .

1: Pre-train the augmented data generator by Eq. 6.
2: for j = 1 → |U | do
3: Randomly mask a proportion of items in su (Eq. 7).
4: Fill in the masked positions by the augmented data generator (Eq. 9).
5: end for
6: Pre-train the difficulty evaluator by Eq. 11.
7: Assign the difficulty score for all the augmented data {Zu } by Eq. 12.
8: Divide {Zu } into N curriculums based on difficulty scores.
9: Initialize the parameters in base model.
10: for k = 1 → N do
11: Train the base model with the k-th curriculum until convergence

using the annealing contrastive loss as Eq. 14.
12: end for
13: Fine-tune the model according to downstream tasks.

wherevu denotes the representation learnedwith original sequence
su for user u, andvz denotes the representation for an augmented
sequence z. Following [34], the loss function for a positive pair
(vu ,vz ) can be defined similar to the softmax cross-entropy loss:

L = −λ ∗ log exp(sim(vu ·vz+ )/τ )

exp(sim(vu ·vz+ )/τ ) +
∑
z−∈N exp(sim(vu ·vz− )/τ )

,

(14)

where z+ is a positive augmented sequence for user u and z− is a
negative augmented sequence for other users, N is a negative set
of augmented sequences, and τ is a hyper-parameter for softmax
temperature. To avoid forgetting easy instances and overfitting
to difficult ones, we add the annealing mechanism to adjust the
contrastive objective: λ = ρ ∗ δk , where ρ is the initial weight,
δ denotes the decay ratio, and k denotes the current curriculum
number. In this way, as the learned courses becomes difficult, the
importance of the scheduled courses is also reduced.

Since our model learns with the augmented instances from easy
to difficult, the user representations can be gradually improved.
Finally, after pre-training, we fine-tune the learned user represen-
tationsvu in various downstream tasks.

4.3.2 Learning process. Algorithm 1 presents the training algo-
rithm for our model. The entire procedure of our approach consists
of four important stages, namely context-aware data augmenta-
tion, course design, contrastive curriculum learning and fine-tuning
stages. At the context-aware data augmentation stage (line 1), we
adopt a context-aware data generator to produce a set of augmented
instances, which first masks a proportion of items in the original
user interaction sequence and then samples “close-to-real” items
based on the predicted probability distribution (Eq. 6). At the course
design stage (line 6-8), we utilize a difficulty evaluator to produce
the difficulty scores of all the augmented instances. Then we rank
them based on scores and divide them into N bins, where each
bin corresponds to a curriculum. At the contrastive curriculum
learning stage (line 9-12), we pre-train our base model with the
above curriculums via an annealing contrastive learning objective
(Eq. 14). Since our model learns from easy curriculums to difficult
ones, the user representations can be gradually enhanced. Finally,
we fine-tune the user representations in downstream applications.
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4.4 Discussion and Analysis
Next, we discuss our framework, and further analyze time complex-
ity in details.

4.4.1 Discussion on Overall Framework. The basic idea of our ap-
proach is to generate high-quality augmented data for contrastive
curriculum learning. We do not simply generate augmented se-
quences by heuristic strategies [42, 45]. Instead, we train a context-
aware data generator that is able to generate sequences conforming
to users’ attribute information. Such a model-based augmentation
approach has seldom been considered in user behavior modeling,
while it is particularly suitable for user-oriented applications [39].
Besides, recent studies have adopted contrastive learning [42, 49]
for user behavior modeling. As the primary difference, our ap-
proach schedules the augmented data in an easy-to-difficult pro-
cess with curriculum contrastive learning. As shown by Hacohen
et al. [10], curriculum learning leverages a Bayesian prior for data
sampling. It adds a covariance term for regularization, which en-
courages the hyper-parameters to better converge to the optimal
point of the contrastive loss. Therefore, the contrastive curriculum
learning approach can further enhance the user representation. To
our knowledge, it is the first time that curriculum learning and
contrastive learning are integrated for improving sequential user
behavior modeling.

4.4.2 Time Complexity. Once the user representationvu (in Eq. 14)
has been learned, the online inference time is similar to other
representation-based methods [51]. Here, we mainly discuss the
offline time cost of model training, including data augmentation,
course arrangement and contrastive curriculum learning. For data
augmentation, it roughly takes a time of O((m+a)(d2)) to generate
a augmented sequences for d-length sequence fromm original data.
For course arrangement, the time cost mainly lies in the sort and
partition of all augmented data. If the score range can be pre-defined,
we can use the bucket sort algorithm [20] to accelerate the process,
which costs O(a). For contrastive curriculum learning, we iterate all
the N bins containing augmented sequences together with original
sequences. Since the number of instances in each bin is a/N , the
corresponding time complexity is O(k ∗ a), where k denotes the
average training epoch until convergence. The total time complex-
ity is O((a(d2 + k + 1) +md2). Actually, the learning within each
course can be largely efficiently parallelized [5]. Meanwhile, when
handling long sequences, we can further adopt locality sensitive
hashing [19] to accelerate the procedure of attention calculation.

5 EXPERIMENTS
In this section, we first set up the experiments, and then present
the results and analysis.

5.1 Experimental Setup
5.1.1 Datasets. We conduct experiments on six datasets collected
from four real-world platforms with various domains and spar-
sity levels. The statistics of these datasets after preprocessing are
summarized in Table 1.

(1) QQBrowser, Kuaibao: we collect the anonymous behavior
data of users from two news apps in Tencent1, namely Kuaibao
1https://www.tencent.com

Table 1: Statistics of the datasets after preprocessing. “QQB”
and “Acts” denote QQBrowser and Actions respectively.

Dataset Beauty Sports Toys Yelp QQB Kuaibao

# Users 22,363 25,598 19,412 30,431 18,405 19,863
# Items 12,101 18,357 11,924 20,033 76,269 92,607
# Avg. Acts / User 8.9 8.3 8.6 10.4 27.8 32.3
# Avg. Acts / Item 16.4 16.1 14.1 15.8 6.7 6.9
# Actions 747,827 296,337 167,597 316,354 511,664 642,312
Sparsity 99.93% 99.95% 99.93% 99.95% 99.97% 99.97%
# Attributes 1,221 2,277 1,027 1,001 620 695

and QQBrowser. The data period spans a given month. In the two
apps, news articles are considered as items, and user authorized
registration information (i.e., hobbies and city) is considered as user
attribute. Each interaction record is one click on a news article by a
user on an app (with a timestamp). The research process is tightly
regulated for avoiding any disclosure of user privacy.

(2)Amazon Beauty, Sports, and Toys: these three datasets are
obtained from Amazon review datasets in [23]. In this work, we
select three subcategories: “Beauty”, “Sports and Outdoors”, and
“Toys and Games”, and utilize the brands of the goods as attributes.

(3) Yelp2: this is a dataset for business recommendation. As it is
very large, we use the transaction records after January 1st, 2019.

For all datasets, we group the interaction records by users and
sort them by the interaction timestamps ascendingly. Following [49],
we only keep the 5-core datasets, and filter out unpopular items and
inactive users with fewer than five interaction records. It should be
noted that in these datasets, Yelp and Amazon are public datasets,
while QQBrowser and Kuaibao are industry datasets.

5.1.2 Evaluation Tasks. We conduct the experiments on three down-
stream tasks, namely sequential recommendation, user attribute
prediction and user activity prediction. The task of sequential rec-
ommendation is that given the historical behaviors and attributes
of a user, we need to predict the next item that the user is likely to
interact with at the next step. User attribute prediction is a classifi-
cation task, in which we aim to predict the profession domain of a
user. We consider 15 first-level profession domains (e.g., education,
IT and finance) derived from the authorized registration informa-
tion from apps. For user activity prediction, we aim to infer the user
activity level in the next week. We treat it as a classification task
with four different activity levels, including high (7 days), medium
(4-6 days), low (1-3 days) and churn according to the total number
of logging days by a user on an app.

5.1.3 Evaluation Settings. For user activity prediction and user at-
tribute prediction, we adopt the evaluation metrics including AUC,
Accuracy, Precision, Recall and F1. we split the dataset into train,
validation, and test sets with an approximate ratio of 8:1:1. For se-
quential recommendation, we employ top-k Hit Ratio (HR@k), top-k
Normalized Discounted Cumulative Gain (NDCG@k) to evaluate
the performance, which are widely used in related works [2, 46].
We report results on HR@{5, 10} and NDCG@{5, 10}. Following

2https://www.yelp.com/dataset
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previous works [2, 47], we apply the leave-one-out strategy for eval-
uation. Concretely, for each user interaction sequence, the last item
is used as the test data, the item before the last one is used as the
validation data, and the remaining data is used for training.

5.1.4 Comparison Methods. We compare our proposed approach
with the following ten baseline methods:

(1) GRU4Rec [13] applies GRU to model user click sequence
for session-based recommendation. We represent the items using
embedding vectors rather than one-hot vectors;

(2) Caser [32] is a CNN-based method capturing high-order
Markov Chains by applying horizontal and vertical convolutional
operations for sequential recommendation;

(3) SASRec [17] is a self-attention based sequential recommen-
dation model, which uses the multi-head attention mechanism to
recommend the next item;

(4) BERT4Rec [31] uses a Cloze objective loss for sequential
recommendation by the bidirectional self-attention mechanism;

(5) GAT [36] is a homogeneous graph neural network which
considers the attention mechanism on the user-item bipartite graph;

(6) SR-GNN [41] models per-session records with GCN and then
construct the sequential model over session representations. In our
work, we consider a day as a session;

(7)VirtualTB [28] proposes GAN-SD for user feature generation
with matched distribution and Multi-agent Adversarial Imitation
Learning for generating better generalizable interaction data;

(8) Mixup [45] proposes a generic vicinal distribution and sam-
ples from mixup vicinal distribution producing virtual vectors;

(9) EDA [40] consists of three simple data augmentation opera-
tions: random insertion, random swap, and random deletion;

(10) CP4Rec [42] utilizes the contrastive pre-training frame-
work to extract meaningful user patterns and proposes three data
augmentation approaches to construct pre-training tasks.

We reproduce most of the baseline methods with the open source
library RecBole [48], and implement those that are not in RecBole
and our approach in PyTorch 3. The dimensionality of embeddings
(including items and apps) is set to 200. We set the number of
Transformer layers is set as 2. The batch size is set to 256. We use
Adam [18] optimization with its default parameter setting. Early
stopping is used with a patience of 5 epochs. The gradient clip-
ping restricts the norm of gradients within [0, 0.1]. Our code is
available at this link: https://github.com/RUCAIBox/Contrastive-
Curriculum-Learning.

5.2 Experimental Results
In this section, we compare the proposed method with several
baselines methods in different tasks on both public datasets and
industry datasets.

In Table 2, we report the performance of different methods in
sequential recommendation on public datasets. Among sequential
recommendation baseline methods, SASRec and BERT4Rec utilize
the self-attention mechanism respectively, and achieve better per-
formance than GRU4Rec and Caser. It indicates that self-attentive
architecture is particularly suitable for modeling sequential data.
However, their improvements are not stable when training with the

3https://pytorch.org/

conventional next-item prediction loss. Within four data augmen-
tation based methods, VTB uses generative methods to augment
data, Mixup and EDA use heuristic methods to rewrite and aug-
ment data. For sequential data, CP4Rec achieves the best results
on most datasets and tasks, since CP4Rec uses heuristic methods
and considers contrastive learning to enhance the representations.
Finally, by comparing our approach CCL with all the baselines, it is
clear to see that our method performs consistently better than them
by a large margin on all datasets. Different from these baselines, we
adopt an attribute-enhanced data generator to produce high-quality
instances for data augmentation, and utilize contrastive curriculum
learning strategy to model user behavior via an easy-to-difficult
learning process. This result shows that our approach is effective
to improve the performance for sequence modeling.

Since industry datasets usually contain more user portraits and
online evaluation indicators of users, we can use sequential user
behavior data for more downstream tasks. In Table 3, we report the
performance of different methods on three tasks (sequential recom-
mendation, user attribute prediction and user activity prediction) on
industry datasets. Among non-sequential baseline methods, in user
attribute prediction and user activity prediction, SR-GNN achieves
relatively better performance than GAT, which captures sequential
behavior characteristics to some extent. In general, non-sequential
recommendation methods perform worse than sequential recom-
mendation methods, since the sequential pattern is important to our
task. Besides, the experimental results of other baselines are similar
to those on public datasets. Our proposed framework performs
consistently better than all the baselines under different metrics. It
indicates that our proposed method is able to learn effective user
representations, and is suitable for various downstream tasks.

5.3 Further Analysis
Next, we continue to study whether our approach works well in
more detailed analysis.

5.3.1 Ablation Study. To effectively utilize the user behavior data,
our approach has made several technical extensions. Here, we ex-
amine how each of them affects the final performance. We consider
the following variants of our approach for comparison:

• CCL¬Aug: Removing the data augmentation module.
• CCL¬Attr: Removing the attribute embeddings in the data aug-

mentation module.
• CCL¬Curriculum: Removing the curriculum learning module.
• CCL¬Annealing: Removing the annealing methods in the cur-

riculum learning module.
• CCLReorder: Arranging the curriculums randomly.
In Table 4, we report the results of these comparison methods

in the sequential recommendation task on Beauty dataset. Similar
conclusions can be drawn on the other datasets or tasks. As can
see, the variants derived from removing operation perform worse
than our proposed CCL method, it indicates that the proposed
techniques are useful to improve the performance. Among them,
CCL¬Aug performsworst, it shows that our proposed context-aware
data augmentation method is more important for our approach.
Besides, our model outperforms CCLReorder. It is because the easy-
to-difficult learning strategy is more helpful to improve the user
behavior modeling.
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Table 2: Performance comparisons of different methods for sequential recommendation task on public datasets. The best
performance and the second best performance methods are denoted in bold and underlined fonts respectively. “∗” indicates
the statistical significance for p < 0.01 compared to the best baseline method.

Datasets Metric GRU4Rec Caser SASRec BERT4Rec VTB Mixup EDA CP4Rec CCL

Beauty

HR@5 0.3125 0.3032 0.3741 0.3640 0.3656 0.3802 0.3893 0.3932 0.4156∗

NDCG@5 0.2268 0.2219 0.2848 0.2622 0.2641 0.2813 0.2889 0.2904 0.3125∗

HR@10 0.4106 0.3942 0.4696 0.4739 0.4744 0.4920 0.4975 0.4995 0.5234∗

NDCG@10 0.2584 0.2512 0.3156 0.2975 0.2995 0.3188 0.3231 0.3247 0.3466∗

Sports

HR@5 0.3055 0.2866 0.3466 0.3375 0.3382 0.3567 0.3634 0.3658 0.3879∗

NDCG@5 0.2126 0.2020 0.2497 0.2341 0.2352 0.2456 0.2534 0.2556 0.2723∗

HR@10 0.4299 0.4014 0.4622 0.4722 0.4725 0.4603 0.4678 0.4695 0.4903∗

NDCG@10 0.2527 0.2390 0.2869 0.2775 0.2783 0.2867 0.2922 0.2943 0.3178∗

Toys

HR@5 0.2795 0.2614 0.3682 0.3344 0.3348 0.3887 0.3923 0.3942 0.4153∗

NDCG@5 0.1919 0.1885 0.2820 0.2327 0.2330 0.2790 0.2864 0.2876 0.2971∗

HR@10 0.3896 0.3540 0.4663 0.4493 0.4502 0.4811 0.4867 0.4889 0.5102∗

NDCG@10 0.2274 0.2183 0.3136 0.2698 0.2705 0.3147 0.3202 0.3212 0.3365∗

Yelp

HR@5 0.5437 0.5111 0.5745 0.5976 0.5985 0.5923 0.5997 0.5956 0.6203∗

NDCG@5 0.3784 0.3696 0.4113 0.4252 0.4254 0.4281 0.4337 0.4203 0.4404∗

HR@10 0.7265 0.6661 0.7373 0.7597 0.7603 0.7587 0.7621 0.7639 0.7832∗

NDCG@10 0.4375 0.4198 0.4642 0.4778 0.4782 0.4729 0.4756 0.4735 0.4912∗

Table 3: Performance comparisons of differentmethods for three tasks on industry datasets. The best performance and the sec-
ond best performance methods are denoted in bold and underlined fonts respectively. “∗” indicates the statistical significance
for p < 0.01 compared to the best baseline method.

Task (Datasets) Metric GAT SR-GNN GRU4Rec Caser SASRec BERT4Rec VTB Mixup EDA CP4Rec CCL

Sequential
Recommendation
(QQBrowser)

HR@5 0.2267 0.2353 0.2517 0.2982 0.3385 0.3073 0.2872 0.3202 0.3519 0.3424 0.3623∗

NDCG@5 0.1645 0.1703 0.1728 0.1960 0.2330 0.1766 0.1896 0.2301 0.2113 0.2409 0.2656∗

HR@10 0.3589 0.3685 0.3917 0.4431 0.4706 0.4055 0.4193 0.4670 0.4569 0.4991 0.5135∗

NDCG@10 0.2071 0.2122 0.2150 0.2428 0.2755 0.2225 0.2324 0.2775 0.2594 0.2871 0.3083∗

Sequential
Recommendation
(Kuaibao)

HR@5 0.2662 0.3218 0.3382 0.3812 0.4524 0.3985 0.4110 0.3799 0.4386 0.4595 0.4725∗

NDCG@5 0.2039 0.2170 0.2303 0.2619 0.3207 0.2713 0.2887 0.2639 0.3098 0.3236 0.3427∗

HR@10 0.4377 0.4709 0.4881 0.5267 0.6053 0.5514 0.5573 0.5378 0.5962 0.6164 0.6368∗

NDCG@10 0.2394 0.2651 0.2787 0.3090 0.3700 0.3208 0.3359 0.3149 0.3607 0.3743 0.3994∗

User Activity
Prediction
(QQBrowser)

ACC 0.6665 0.6624 0.6574 0.6693 0.6712 0.6699 0.6734 0.6741 0.6757 0.6778 0.6845∗

Precsion 0.6726 0.6593 0.6662 0.6785 0.6793 0.6782 0.6802 0.6811 0.6823 0.6840 0.6896∗

Recall 0.6632 0.6540 0.6562 0.6696 0.6723 0.6717 0.6745 0.6753 0.6758 0.6773 0.6843∗

F1 0.6665 0.6566 0.6584 0.6726 0.6755 0.6762 0.6774 0.6798 0.6805 0.6815 0.6880∗

User Activity
Prediction
(Kuaibao)

ACC 0.6525 0.6482 0.6391 0.6502 0.6518 0.6511 0.6534 0.6545 0.6547 0.6556 0.6689∗

Precsion 0.6578 0.6522 0.6436 0.6590 0.6603 0.6617 0.6634 0.6647 0.6654 0.6662 0.6768∗

Recall 0.6493 0.6475 0.6383 0.6517 0.6521 0.6525 0.6578 0.6612 0.6623 0.6636 0.6743∗

F1 0.6535 0.6493 0.6412 0.6579 0.6594 0.6604 0.6613 0.6625 0.6632 0.6639 0.6752∗

User Attribute
Prediction
(QQBrowser)

ACC 0.6554 0.6772 0.6945 0.7005 0.7102 0.7135 0.7147 0.7156 0.7255 0.7298 0.7401∗

Precsion 0.6675 0.6663 0.7052 0.7112 0.7137 0.7164 0.7221 0.7243 0.7260 0.7282 0.7367∗

Recall 0.6601 0.6725 0.6822 0.6904 0.6915 0.6934 0.6967 0.7013 0.7115 0.7129 0.7221∗

F1 0.6685 0.6901 0.6956 0.6980 0.7012 0.7067 0.7128 0.7156 0.7190 0.7225 0.7315∗

User Attribute
Prediction
(Kuaibao)

ACC 0.6520 0.6482 0.6391 0.6567 0.6612 0.6635 0.6678 0.6723 0.6789 0.6802 0.6912∗

Precsion 0.6573 0.6525 0.6437 0.6621 0.6645 0.6668 0.6690 0.6721 0.6745 0.6713 0.6855∗

Recall 0.6492 0.6475 0.6386 0.6567 0.6612 0.6624 0.6682 0.6711 0.6756 0.6725 0.6875∗

F1 0.6531 0.6494 0.6417 0.6610 0.6632 0.6656 0.6678 0.6718 0.6750 0.6719 0.6865∗

5.3.2 Parameter Tuning. In this part, we examine the robustness of
our model, and analyze the influence of hyperparameters and the
sparsity of training data on model performance. Course design is a
key step of our approach, in which we set the number of courses
N for contrastive curriculum learning. To examine the influence

of different course number, we vary the course number from 2 to
20 incremented by 2 and report the corresponding performance on
Sports dataset for sequential recommendation task. As shown in
Figure 2(a), our approach outperforms the baseline under all settings.
It indicates that our approach is very robust with the settings of
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Table 4: Ablation analysis on Beauty dataset (sequential rec-
ommendation).

Models HR@5 NDCG@5 HR@10 NDCG@10

CCL¬Aug 0.3796 0.2855 0.4898 0.3136
CCL¬Attr 0.4060 0.3035 0.5152 0.3389
CCL¬Curriculum 0.3937 0.2915 0.5014 0.3277
CCL¬Annealing 0.4044 0.3035 0.5126 0.3401
CCLReorder 0.3998 0.3002 0.5085 0.3354

CCL 0.4156 0.3125 0.5234 0.3466

course number. Besides, when N is set to 10, our model achieves
the best performance. It demonstrates that a proper number of
courses is promising for user behavior modeling and the proposed
approach can better utilize the augmented data to enhance user
representation.

We simulate the data sparsity scenarios by using different propor-
tions of the full dataset, i.e., 20%, 40%, 60%, 80%, and 100%. Figure 2(b)
shows the evaluation results of sequential recommendation task
on Sports dataset. The performance substantially drops when less
training data is used. While, the proposed contrastive curriculum
learning approach is consistently better than baselines in all cases,
especially in an extreme sparsity level (20%). This observation im-
plies that the contrastive curriculum learning framework is able
to make better use of the augmented data, which alleviates the
influence of data sparsity problem for user behavior modeling to
some extent.
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Figure 2: Performance tuning with different number of
courses and different sparsity levels on the Sports dataset.

5.4 Online A/B Test
To further examine the effectiveness of our approach, we conduct
online A/B tests on the Click Through Rate (CTR) metrics in real
application scenario of the QQ browser app. Specifically, we select
four real business scenarios from File Search, File Download, Video
Player and News Search. These are four functional modules with
high user traffic in the QQ browser app. Among them, File Search
module is for the search of local files, File Download module is for
the download of files on the Internet, Video Player module is to
play videos on the Internet, and News Search module is to look for
news that users are interested in.

Then, we randomly split them into control group (A) and treat-
ment group (B) with the same size. For comparison, we apply our

Table 5: Comparison of CTR metrics in online A/B test.
Among them, File Tab and File Download each have 500,000
new users, and Video Player and News Search each have
1,000,000 new users.

Models File Search File Download Video Player News Search

Origin 0.0594 0.0636 0.0640 0.0678
Origin+CCL 0.0650 0.0650 0.0676 0.0696

Improvement +2.6% +2.2% +4.7% +2.7%

model to generate augmented data and learn user representations.
Then, we adopt the same strategy for the selected users of two
groups. Finally, we compute CTR for both groups, defined as CTR=
(Number of Clicks / Number of Impressions), CTR is a commonly-used
metric to measure the success of an online advertising campaign.
A group with a larger CTR value indicates that the corresponding
algorithm is better in capturing user interests in the cold start stage
and improving user retention with a high probability in various
application scenarios.

Here, we consider a 7-day period of the QQ browser app for
online A/B tests. Table 5 presents the CTR comparison between
the original method and our method. As we can see, our method
is consistently better than the compared baseline. Meanwhile, the
time cost of our method is similar to the original method with the
same order of magnitude in the real-time environment. Our online
A/B test further demonstrates the effectiveness of the proposed
method.

6 CONCLUSION
In this paper, we present a novel curriculum contrastive learning
framework for effectively modeling the sequential user behavior
data. Our contributions can be summarized in two points. First, we
designed a context-aware data augmentation approach to produce
the augmented sequences confirming to users’ attribute informa-
tion. Second, we proposed a curriculum learning strategy to con-
duct contrastive learning via an easy-to-difficult learning process.
Experimental results on both public and industry datasets have
demonstrated the effectiveness of our approach.

It is worth noting that the contrastive curriculum learningmethod
can be easily adapted to other tasks. As future work, we will con-
sider extending the current framework for data modeling in other
kinds of applications.

ACKNOWLEDGEMENT
This work was partially supported by the National Natural Sci-
ence Foundation of China under Grant No. 61872369 and 61832017,
Beijing Academy of Artificial Intelligence (BAAI) under Grant No.
BAAI2020ZJ0301, Beijing Outstanding Young Scientist Program
under Grant No. BJJWZYJH012019100020098, the Fundamental
Research Funds for the Central Universities, the Research Funds
of Renmin University of China under Grant No. 18XNLG22 and
19XNQ047, and the Outstanding Innovative Talents Cultivation
Funded Programs 2020 of Renmin Univertity of China. Xin Zhao is
the corresponding author.

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3745



REFERENCES
[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum learning. In ICML 2009. 41–48.
[2] Shuqing Bian, Wayne Xin Zhao, Kun Zhou, Xu Chen, Jing Cai, Yancheng He,

Xingji Luo, and Ji-Rong Wen. 2021. A Novel Macro-Micro Fusion Network for
User Representation Learning on Mobile Apps. InWWW 2021. 3199–3209.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In ICML
2020. 1597–1607.

[4] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
In ICLR 2020.

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang,
and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In NIPS 2012.
1232–1240.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT 2019. 4171–4186.

[7] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2017. Sequential User-based
Recurrent Neural Network Recommendations. In RecSys 2017. 152–160.

[8] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason I. Hong, and Norman M. Sadeh.
2013. Why people hate your app: making sense of user feedback in a mobile app
store. In KDD 2013. 1276–1284.

[9] Michael Gutmann and Aapo Hyvärinen. 2012. Noise-Contrastive Estimation of
Unnormalized Statistical Models, with Applications to Natural Image Statistics.
J. Mach. Learn. Res. 13 (2012), 307–361.

[10] Guy Hacohen and Daphna Weinshall. 2019. On The Power of Curriculum Learn-
ing in Training Deep Networks. In ICML 2019.

[11] Ruining He and Julian J. McAuley. 2016. Fusing Similarity Models with Markov
Chains for Sparse Sequential Recommendation. In ICDM 2016. 191–200.

[12] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse
Predictive Analytics. In SIGIR 2017. 355–364.

[13] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In ICLR
2016.

[14] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y. Chang.
2018. Improving Sequential Recommendation with Knowledge-Enhanced Mem-
ory Networks. In SIGIR 2018. 505–514.

[15] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G. Hauptmann.
2015. Self-Paced Curriculum Learning. In AAAI 2015. 2694–2700.

[16] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. 2018. Men-
torNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on
Corrupted Labels. In ICML 2018. 2309–2318.

[17] Wang-Cheng Kang and Julian J. McAuley. 2018. Self-Attentive Sequential Rec-
ommendation. In ICDM 2018. 197–206.

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR 2015.

[19] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Efficient
Transformer. In ICLR 2020.

[20] Fang Liu, Meng-Cheng Huang, Xuehui Liu, and Enhua Wu. 2009. Efficient depth
peeling via bucket sort. In ACM SIGGRAPH/EUROGRAPHICS 2009. 51–57.

[21] Lajanugen Logeswaran and Honglak Lee. 2018. An efficient framework for
learning sentence representations. In ICLR 2018.

[22] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. 2016. Hierarchical
Question-Image Co-Attention for Visual Question Answering. In NeurIPS 2016.
289–297.

[23] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-Based Recommendations on Styles and Substitutes. In SIGIR 2015.
43–52.

[24] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013. Distributed
Representations of Words and Phrases and their Compositionality. In NeurIPS
2013. 3111–3119.

[25] Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabás Póczos,
and Tom M. Mitchell. 2019. Competence-based Curriculum Learning for Neural
Machine Translation. In NAACL-HLT 2019. 1162–1172.

[26] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized Markov chains for next-basket recommendation. InWWW
2010. 811–820.

[27] Mrinmaya Sachan and Eric P. Xing. 2016. Easy Questions First? A Case Study on
Curriculum Learning for Question Answering. In ACL 2016.

[28] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and Anxiang Zeng. 2019.
Virtual-Taobao: Virtualizing Real-World Online Retail Environment for Rein-
forcement Learning. In AAAI 2019. 4902–4909.

[29] Ajit Paul Singh and Geoffrey J. Gordon. 2008. Relational learning via collective
matrix factorization. In SIGKDD 2008. 650–658.

[30] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. AutoInt: Automatic Feature Interaction Learning via Self-
Attentive Neural Networks. In CIKM 2019. 1161–1170.

[31] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. In CIKM 2019. 1441–1450.

[32] Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation
via Convolutional Sequence Embedding. InWSDM 2018. 565–573.

[33] Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C. Phan, Xingdi Yuan,
Jinfeng Rao, Siu Cheung Hui, and Aston Zhang. 2019. Simple and Effective
Curriculum Pointer-Generator Networks for Reading Comprehension over Long
Narratives. In ACL 2019. 4922–4931.

[34] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. CoRR abs/1807.03748 (2018).

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS 2017. 5998–6008.

[36] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR 2018.

[37] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2019. Deep Graph Infomax. In ICLR 2019.

[38] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. IRGAN: A Minimax Game for Unifying Generative
and Discriminative Information Retrieval Models. In SIGIR 2017. 515–524.

[39] Qinyong Wang, Hongzhi Yin, Hao Wang, Quoc Viet Hung Nguyen, Zi Huang,
and Lizhen Cui. 2019. Enhancing Collaborative Filtering with Generative Aug-
mentation. In KDD 2019. 548–556.

[40] Jason W. Wei and Kai Zou. 2019. EDA: Easy Data Augmentation Techniques
for Boosting Performance on Text Classification Tasks. In EMNLP-IJCNLP 2019.
6381–6387.

[41] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan.
2019. Session-Based Recommendation with Graph Neural Networks. In AAAI
2019. 346–353.

[42] Xu Xie, Fei Sun, Zhaoyang Liu, Jinyang Gao, Bolin Ding, and Bin Cui. 2020.
Contrastive Pre-training for Sequential Recommendation. CoRR abs/2010.14395
(2020).

[43] Yi-Ting Yeh and Yun-Nung Chen. 2019. QAInfomax: Learning Robust Question
Answering System by Mutual Information Maximization. In EMNLP-IJCNLP 2019.
3368–3373.

[44] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A Dynamic
Recurrent Model for Next Basket Recommendation. In SIGIR 2016. 729–732.

[45] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. 2018.
mixup: Beyond Empirical Risk Minimization. In ICLR 2018.

[46] Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, De-
qing Wang, Guanfeng Liu, and Xiaofang Zhou. 2019. Feature-level Deeper Self-
Attention Network for Sequential Recommendation. In IJCAI 2019. 4320–4326.

[47] Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and Ji-Rong Wen. 2020.
Revisiting Alternative Experimental Settings for Evaluating Top-N Item Recom-
mendation Algorithms. In CIKM 2020. 2329–2332.

[48] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Kaiyuan Li, Yushuo Chen,
Yujie Lu, Hui Wang, Changxin Tian, Xingyu Pan, Yingqian Min, Zhichao Feng,
Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang, and
Ji-Rong Wen. 2021. RecBole: Towards a Unified, Comprehensive and Efficient
Framework for Recommendation Algorithms. In CIKM 2021.

[49] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang,
Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-Rec: Self-Supervised Learning for
Sequential Recommendation with Mutual Information Maximization. In CIKM
2020. 1893–1902.

[50] Kun Zhou, Wayne Xin Zhao, Shuqing Bian, Yuanhang Zhou, Ji-Rong Wen, and
Jingsong Yu. 2020. Improving Conversational Recommender Systems via Knowl-
edge Graph based Semantic Fusion. In KDD 2020. 1006–1014.

[51] Meizi Zhou, Zhuoye Ding, Jiliang Tang, and Dawei Yin. 2018. Micro Behaviors: A
New Perspective in E-commerce Recommender Systems. InWSDM2018. 727–735.

[52] Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. 2014. Mobile app recom-
mendations with security and privacy awareness. In KDD 2014. 951–960.

[53] Yin Zhu, Erheng Zhong, Sinno Jialin Pan, Xiao Wang, Minzhe Zhou, and Qiang
Yang. 2013. Predicting user activity level in social networks. In CIKM 2013.
159–168.

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

3746


	Abstract
	1 Introduction
	2 Related Work
	3 PRELIMINARIES
	3.1 Problem Statement
	3.2 Base Model for Sequential User Behavior

	4 APPROACH
	4.1 Context-aware Data Augmentation
	4.2 Easy-to-Difficult Course Arrangement
	4.3 Contrastive Curriculum Learning
	4.4 Discussion and Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Further Analysis
	5.4 Online A/B Test

	6 Conclusion
	References



