
Learning Effective and Efficient Embedding via an
Adaptively-Masked Twins-based Layer

Bencheng Yan∗, Pengjie Wang∗, Kai Zhang, Wei Lin, Kuang-Chih Lee, Jian Xu and Bo Zheng†
Alibaba Group

{bencheng.ybc,pengjie.wpj,victorlanger.zk,kuang-chih.lee,xiyu.xj,bozheng}@alibaba-inc.com,lwsaviola@163.com

ABSTRACT
Embedding learning for categorical features is crucial for the deep
learning-based recommendation models (DLRMs). Each feature
value is mapped to an embedding vector via an embedding learn-
ing process. Conventional methods configure a fixed and uniform
embedding size to all feature values from the same feature field.
However, such a configuration is not only sub-optimal for em-
bedding learning but also memory costly. Existing methods that
attempt to resolve these problems, either rule-based or neural archi-
tecture search (NAS)-based, need extensive efforts on the human
design or network training. They are also not flexible in embedding
size selection or in warm-start-based applications. In this paper,
we propose a novel and effective embedding size selection scheme.
Specifically, we design an Adaptively-Masked Twins-based Layer
(AMTL) behind the standard embedding layer. AMTL generates a
mask vector to mask the undesired dimensions for each embedding
vector. The mask vector brings flexibility in selecting the dimen-
sions and the proposed layer can be easily added to either untrained
or trained DLRMs. Extensive experimental evaluations show that
the proposed scheme outperforms competitive baselines on all the
benchmark tasks, and is also memory-efficient, saving 60% memory
usage without compromising any performance metrics.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Dimension Selection, Save Memory, Warm Start

1 INTRODUCTION
Recently, deep learning-based recommendation models (DLRMs)
have been widely adopted in many web-scale applications such
as recommender systems [2, 5, 9–11, 16]. One of the main parts
of DLRMs is the embedding layer, which exploits the categorical
features. A standard embedding layer maps the categorical feature

∗ These authors contributed equally to this work and are co-first authors.
† Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482130

Figure 1: Comparison among existing methods and ours.
to an embedding space [2, 5, 16]. Specifically, given a feature field 𝐹
and let its vocabulary size be |𝐹 |, each feature value 𝑓𝑖 ∈ 𝐹 is mapped
to an embedding vector by an embedding matrix 𝑊 ∈ R |𝐹 |×𝐷 ,
where 𝐷 is a predefined embedding dimension.

However, the above standard method can lead to two problems.
First, in real applications, different feature values in the same fea-
ture field can have significantly different frequencies. For high-
frequency feature values, it is necessary to use a sufficiently large
embedding dimension to express rich information. Meanwhile, as-
signing too large embedding dimensions to low-frequency feature
values is prone to over-fitting issues. Therefore, a fixed and uniform
embedding dimension for all the feature values in a feature field can
undermine effective embedding learning for different feature values.
Second, storing the embedding matrix with a fixed and uniform
dimension may result in a huge memory cost [14, 17, 18]. A flexible
dimension assignment is needed to reduce the memory cost.

There are some existingworks trying to learn unfixed and nonuni-
form embedding dimensions for different feature values. They can
be primarily divided into two categories. (1) Rule-based methods
adopt human-defined rules, typically according to the feature fre-
quencies, to give different embedding dimensions to different fea-
ture values [4] (see Fig. 1 (b) for an example). The problem with
this category of methods is that they heavily rely on human knowl-
edge and human labor. The resulting rough dimension selection for
groups of feature values can often lead to poor performance (see
Section 3.2). (2) Neural architecture search (NAS)-based methods use
NAS techniques to search from several candidate embedding dimen-
sions to find a suitable one for each feature value [8, 12, 18, 19] (see
Fig 1 (c) for an example). These methods require careful design of
the search space and training-searching strategies. The search space
is usually limited to a restricted set of discrete dimensions. Besides,
both categories of methods mentioned above require training (i.e.,
embedding learning) from scratch. However, in real applications,
there may exist some embedding matrices already trained with a
huge amount of data. Such embedding matrices can be utilized for
warm starting (see Section 3.4). Unfortunately, existing methods
are not friendly to accommodate such a warm start mechanism.

In this paper, we propose a novel and effective method to select
proper embedding dimensions for different feature values. The basic
idea is to add an Adaptively-Masked Twins-based Layer (AMTL)

ar
X

iv
:2

10
8.

11
51

3v
1 

 [
cs

.L
G

] 
 2

4 
A

ug
 2

02
1

https://doi.org/10.1145/3459637.3482130


on top of the embedding layer. Such a layer can adaptively learn a
mask vector to mask the undesired dimension of the embedding
vector for each feature value. The masked embedding vectors can
be taken as the vectors with adaptive dimensions and are fed into
the subsequent processes in DLRMs. This method exhibits some
nice properties. First, it is effective for embedding learning because
the embedding dimension of different feature values can be learned
and adjusted in continuous integer space with sufficient flexibility
without human interaction or specific NAS design (see Section 3.2).
Second, it is efficient since a memory-efficient model can be built
by adjusting the embedding dimension (see Section 3.3). Third, the
parameters of the embedding matrix can be efficiently trained with
the warm start mechanism (see Section 3.4).

We summarize our contributions as follows: (1) We propose
a novel embedding dimension selection method that completely
removes the necessity of human rules or NAS architectures to
facilitate adaptive dimension learning. (2) The proposed method
(AMTL) can be easily applied in trained DLRMs to facilitate a warm
start. The twins-based architecture successfully tackles the sample
unbalance problem. (3) Extensive experimental results demonstrate
that the proposed method outperforms strong baseline methods.
The nice properties of AMTL helped us reduce memory cost by
up-to 60% without compromising any performance metrics, and can
further improve the performance by the warm start mechanism.

2 METHOD
2.1 Basic Idea
We first recall a standard embedding layer which can be expressed
as 𝑒𝑖 = 𝑊𝑇 𝑣𝑖 where 𝑣𝑖 is a one-hot vector for the feature value
𝑓𝑖 ,𝑊 ∈ R |𝐹 |×𝐷 refers to the embedding table and 𝑒𝑖 ∈ R𝐷 is the
embedding vector of 𝑓𝑖 . Then we define a mask vector𝑚𝑖 ∈ {0, 1}𝐷
for 𝑓𝑖 . This mask vector should satisfy

𝑚𝑖, 𝑗 =

{
1 𝑗 ≤ 𝑘𝑖
0 𝑗 > 𝑘𝑖

(1)

where 𝑘𝑖 ∈ [0, 𝐷 − 1] is a learnable integer parameter which is
influenced by the frequency of 𝑓𝑖 . Then, to allow different 𝑓𝑖 can
adjust its embedding dimension, the basic idea is that we can use the
mask vector𝑚𝑖 to mask the embedding vector 𝑒𝑖 , i.e., 𝑒𝑖 =𝑚𝑖 ⊙ 𝑒𝑖
where ⊙ represents the element-wise multiply. Since the value
whose index is larger than 𝑘𝑖 in 𝑒𝑖 is zero, the masked embedding
vector 𝑒𝑖 can be taken as an embedding vector where the embedding
dimension is adaptively adjusted by the mask vector, and the first
𝑘𝑖 +1 dimensions (i.e., from 0-th to 𝑘𝑖 -th dimension) of 𝑒𝑖 is selected.
Memory Saving. When storing 𝑒𝑖 , we can simply drop the zero
values in 𝑒𝑖 to save memory and when fetching the stored vector,
we can simply re-pad zero values to recover 𝑒𝑖 .
Embedding Usage. When embedding vectors are assigned with
different dimensions, all of the existing methods [4, 8, 12, 18, 19]
have to design an additional layer to unify these vectors to a same
length to fit the following uniform MLP layers in DLRMs. Unlike
these methods, our method does not need any additional layers
since the masked embedding vectors 𝑒𝑖 have the same length by
zeros paddings, and can be directly fed into the following layers.
Why select first 𝑘𝑖 + 1 dimensions? In this paper, We take the
strategy about selecting first 𝑘𝑖 + 1 dimensions (i.e., from 0-th to

Figure 2: The framework of AMTL.
𝑘𝑖 -th dimension) of 𝑒𝑖 as an example and others (e.g., selecting last
𝑘𝑖 + 1 dimensions) are also allowed. One should keep in mind is
that the select strategy should follow some rules. In other words,
randomly selecting 𝑘𝑖 + 1 dimensions of 𝑒𝑖 is not a good strategy
because we can hardly directly drop and recover these zeros values
in 𝑒𝑖 to save memory due to the random distribution of zeros values
in 𝑒𝑖 , and it also prevents the model to characterize each feature
value since the same feature value may be mapped to different
embedding vectors due to the random selection.

2.2 Adaptively-Masked Twins-based Layer
Adaptively-Masked Twins-based Layer (AMTL) is designed to gen-
erate a mask vector𝑚𝑖 in Eq 1 for each feature value 𝑓𝑖 . The frame-
work of AMTL is shown in Fig 2.

2.2.1 Input and Output. Input: Since𝑚𝑖 is required to be adjusted
by the feature frequency, to allow AMTL to have such frequency
knowledge, we take the frequency attribute (e.g., the appear times
in history, the frequency rank in this feature field and so no) of 𝑓𝑖
as the input of AMTL. The input sample is denoted as 𝑠𝑖 ∈ 𝑅𝑧 and 𝑧
is the input dimension. Output: The output of AMTL is a one-hot
vector (called selection vector) to represent 𝑘𝑖 in Eq 1.

2.2.2 Architecture. We propose a twins-based (i.e., two branches)
architecture and each branch is an Adaptively-Masked Layer (AML).
Note parameters of the two branches are not sharing. Both of AML
is a multilayer perceptron: ℎ𝑙 = 𝜎 (𝑊𝑇

𝑙
ℎ𝑙−1 + 𝑏𝑙 ) where ℎ0 is the

frequency vector,𝑊𝑙 and 𝑏𝑙 are the parameters of the 𝑙-th layer, 𝜎
is an activation function and ℎ𝐿 ∈ R𝐷 is the output of the last layer.

The motivation of such twins design is that if we only take a
single branch (i.e., AML), the parameters update of AML will be
dominated by the high-frequency feature values due to the unbal-
anced problem. Specifically, since high-frequency feature values
appear more times in samples, the major part of the input sample
of AML represents high-frequency vectors. Then, the parameters
of AML may be heavily influenced by the high-frequency vectors
and AML may blindly select large embedding dimensions. Hence
we design twins-based architecture to address this problem where
the two branches (i.e., h-AML and l-AML) are used for high- and
low- frequency samples respectively. In this way, the parameters
of the l-AML will not be dominated by high-frequency samples and
can give an unbiased decision.
Weighted Sum.However, one challenge is that we can hardly give
a threshold to differentiate the high- and low- frequency samples
to feed different samples to different branches. Hence, we propose



a soft decision strategy. Specifically, we define the frequency value
of 𝑓𝑖 as 𝑞𝑖 which refers to the present times of 𝑓𝑖 in history, and
feed the input sample 𝑠𝑖 into h-AML and l-AML respectively. A
weighted sum is applied on the 𝐿-th outputs (i.e., ℎ (h-AML)

𝐿
∈ R𝐷

and ℎ (l-AML)
𝐿

∈ R𝐷 ) of h-AML and l-AML, i.e.,

ℎ
(AMTL)
𝐿

= 𝛼𝑖 ∗ ℎ (h-AML)
𝐿

+ (1 − 𝛼𝑖 ) ∗ ℎ (l-AML)
𝐿

(2)
𝛼𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑛𝑜𝑟𝑚(𝑞𝑖 )) (3)

where 𝛼𝑖 ∈ [0, 1] is the weight score which is influenced by 𝑞𝑖 .
𝑛𝑜𝑟𝑚 operation normalizes 𝑞𝑖 to a standard normal distribution
which allows 𝛼𝑖 is distributed smoothly around 1/2. Otherwise, all
𝛼𝑖 may be close to one without the 𝑛𝑜𝑟𝑚 operation. In this way,
for the samples with high-frequency, the corresponding ℎ (AMTL)

𝐿

is dominated by ℎ (h-AML)
𝐿

due to a large 𝛼𝑖 . Then the parameters
of h-AML are mainly updated during back-propagation and vice
versa. Hence, AMTL can adjust the gradients of h-AML and l-AML to
address the unbalanced problem. Note here we only give an example
to calculate the weight value 𝛼𝑖 , other ways are also allowed as
long as the produced 𝛼𝑖 has similar properties.

Then we apply softmax function on ℎ (AMTL)
𝐿

, i.e.,

𝑜𝑖,𝑝 = 𝑒𝑥𝑝 (ℎ (AMTL)
𝐿,𝑝

)/∑𝑗𝑒𝑥𝑝 (ℎ
(AMTL)
𝐿,𝑗

) (4)

where 𝑜𝑖 ∈ R𝐷 refers the probability to select different embedding
dimension of 𝑓𝑖 , and 𝑜𝑖,𝑝 is the 𝑝-th element of 𝑜𝑖 . The selection
vector can be obtained by

𝑡𝑖 = 𝑜𝑛𝑒_ℎ𝑜𝑡 (𝑎𝑟𝑔𝑚𝑎𝑥𝑝 (𝑜𝑖,𝑝 )) (5)
Then the corresponding mask vector can be generated by

𝑚𝑖 = 𝑀𝑇 𝑡𝑖 (6)

where𝑀 ∈ R𝐷×𝐷 is a pre-defined mask matrix and𝑀𝑖, 𝑗 = 1 when
𝑗 ≤ 𝑖 otherwise 𝑀𝑖, 𝑗 = 0. Then the masked embedding 𝑒𝑖 can be
obtained by𝑚𝑖 . Note in practice, we usually apply different AMTLs
on different important feature fields (e.g., User ID and Item ID) and
the parameters of these layers are not sharing for the purpose of
field awareness.

2.2.3 Relaxation. However, the problem is that the learning pro-
cess of AMTL is non-differentiable due to the discrete process in Eq
5. It means the parameters of AMTL cannot be directly optimized
by a stochastic gradient descent (SGD). To address this problem,
we relax 𝑡𝑖 to a continuous space by temperated softmax [6, 7, 13].
Concretely, the 𝑝-th element of 𝑡𝑖 can be approximated as

𝑡𝑖,𝑝 ≈ 𝑡𝑖,𝑝 = 𝑒𝑥𝑝 (ℎ (𝐴𝑀𝑇𝐿)
𝐿,𝑝

/𝑇 )/∑𝑗 (𝑒𝑥𝑝 (ℎ
(𝐴𝑀𝑇𝐿)
𝐿,𝑗

/𝑇 ) (7)

where 𝑇 is the temperature hyper-parameter. When 𝑇 → 0, this
approximation becomes exact. Since 𝑡𝑖 is a continuous vector with
differentiable process, SGD can be naturally applied. Hence, instead
of learning the discrete vector 𝑡𝑖 , we learn 𝑡𝑖 to approximate 𝑡𝑖 .

However, there exists an information gap between training and
inference phases when using temperature softmax. Specifically, we
use the vector 𝑡𝑖 for training. While in inference, we only use the
discrete vector 𝑡𝑖 . To close this gap, inspired by the idea Straight-
Through Estimator (STE) [1], we rewrite 𝑡𝑖 as

�̃�𝑖 = 𝑡𝑖 + 𝑠𝑡𝑜𝑝_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝑡𝑖 − 𝑡𝑖 ) (8)

Table 1: The results about CTR tasks.

AUC(%) FBE MDE AutoEmb AMTL
IJCAI-AAC 62.37 62.40 62.85 63.45
MovieLens 80.84 80.51 81.28 81.50
Taobao 73.64 73.54 73.67 74.02

Table 2: Memory cost comparison.

Methods FBE MDE AutoEmb AMTL
Avg(Dim) 300 170 206 110
Ratio 100% 56.7% 68% 36.7%

where stop_gradient is used to prevent the gradient from back-
propagation through it. Since the forward pass is not affected by
stop_gradient, �̃�𝑖 = 𝑡𝑖 during this phase. For the back-propagation,
it avoids the non-differentiable process by stop_gradient.

3 EXPERIMENTS
3.1 Experiment Setup
Data Sets. (1) MovieLens 1 is a user review data about movies and
is collected from MovieLens website. There are a total of 1,000,209
records. (2) IJCAI-AAC 2 is collected from a sponsored search in E-
commerce. There are a total of 478,138 records. (3) Taobao Dataset
is an industrial dataset which is constructed from Taobao. There
are a total of 50 billion around records.
Baselines.We consider different kinds of state-of-the-art embed-
ding methods as baselines (1) Standard: traditional Fixed-based
Embedding (FBE). (2) Rule-Based: MDE [4] divides different feature
values into several blocks by their frequency, and assigns different
embedding dimensions for different blocks by rules. (3) NAS-Based:
AutoEmb [19] adopts NAS to select embedding dimensions among
some candidate embedding dimensions for different feature values.
Setting. The maximal embedding dimension and the DLRM bone-
skeleton of all methods are set the same. The dimension selection
strategy is applied to the feature fields which are related to the user
and item property (e.g., User ID and Item ID). For AutoEmb, the
candidate dimension list is set smoothly by following the original
paper [19]. The temperature 𝑇 in Eq 7 is set by grid search.

3.2 Click-Through Rate Prediction Tasks
Here, we compare our method AMTL with baselines on click-
through rate (CTR) prediction tasks and take the AUC [3] score as
the metric. Note a slightly higher AUC at 0.1%-level is regarded
as significant for the CTR task [15, 20]. As shown in Table 1, we
can conclude that: (1) Compared with FBE, AMTL can archive
better performance in all datasets. It shows that adopting an un-
fixed embedding dimension can improve the model performance.
(2) Compared with the rule-based method (i.e., MDE), AMTL out-
performs MDE. Besides, MDE only obtains similar performance
with FBE. It indicates a rough human rule on dimension selection
cannot always guarantee an improvement. (3) For the NAS-based
method (AutoEmb), AMTL also archives better performance. It
demonstrates that AMTL adopts a more suitable scheme i.e., select-
ing a dimension from a continuous integer space.
1https://grouplens.org/datasets/movielens/
2https://tianchi.aliyun.com/competition/entrance/231647/information



Table 3: The results of warm start.

AUC(%) FBE MDE AutoEmb AMTL
Warm Start 77.05 75.43 75.62 77.22
Random Start 73.64 73.54 73.67 74.02

Table 4: The results of ablation study.

FBE AMTL AML AMTL-nSTE
AUC(%) 62.37 63.45 62.97 63.01

3.3 Memory Cost Comparison
Here, we compare the memory cost of different methods. Since
the memory size of the embedding matrix is in direct proportion
to the dimension [14, 17], for simplicity, the averaged dimension
(i.e., Avg(Dim)) are reported. We take the feature field "User ID" in
Taobao as an example (others can have similar conclusions), and its’
maximal dimension is set as 300. Table 2 shows the results. We also
show the Avg(Dim) ratio compared with FBE. We can find that (1)
Compared with FBE, all the dimension selection methods can save
memory size by reducing the embedding to a suitable dimension.
(2) Since AMTL allows a more flexible dimension selection in a
continuous integer space, it reduces memory cost more significantly
by around 60 %.

3.4 Evaluation for the Warm Start
Here, we conduct experiments to evaluate the warn start on the
dataset Taobao which is close to the industrial and real system.
There are two kinds of parameters in DLRM, i.e., the parameters of
embedding matrix and hidden layers. In the warm start setting, for
existing dimension selection methods, we initialize the parameters
of hidden layers by loading the parameters from the online model
in Taobao, and the parameters of embedding matrix are randomly
initialized due to the inability on the warm start of embedding
matrix. While, since AMTL and FBE can warm start the parameters
both of the embedding matrix and the hidden layers, we load both
of them from the online model for these two methods. The results
are shown in Table 3. The results of random start are also provided.
We can find that compared with MDE and AutoEmb, AMTL can
perform better in the warm start setting. Specifically, compared
with the best baseline AutoEmb, the gain of AMTL is 1.6% in the
warm start manner, which is 5× times larger than the gain in the
random start manner. Furthermore, due to the inability for thewarm
start of the embedding matrix, MDE and AutoEmb even perform
worse than the standard full embedding. It demonstrates that the
dimension selection scheme designed in AMTL is a more wise and
flexible way in real application systems.

3.5 Evaluation for Frequency
Here we analyze whether AMTL can give suitable dimensions for
different feature values. Specifically, we divide the feature value into
7 groups (i.e., 𝐺𝑖 , 𝑖 ∈ {0, 1, 2, ..., 6}) by frequency and the average
frequency of different groups is increased from𝐺0 to𝐺6. Note there
are too many feature fields in different datasets, we take the feature
field "User ID" in Taobao as an example, and others have similar
results. The averaged embedding dimension in different groups is
reported in Fig 3 (a). It shows that when the frequency increases
(i.e., from 𝐺0 to 𝐺6), the selected average dimension is increased.

(a) AMTL (b) AML

Figure 3: Dimension section of AMTL and AML.

Table 5: The time cost of different methods

FBE MDE AutoEmb AMTL
per epoch (s) 13.3 13.8 15.7 14.5

It indicates AMTL can assign suitable embedding dimensions to
different frequency feature values adaptively.

3.6 Ablation Study
Here, we conduct an ablation study on the twins-based architecture
and STE. Due to the limited space, the results on IJCAI-AAC are
reported and similar conclusions can be found from other datasets.
Evolution on twins-based architecture.We compared the AUC
score between AMTL and AML (only a single branch) on CTR task.
From Table 4, although both AML and AMTL perform better than
FBE, AMTL archives a higher performance. It indicates twins-based
architecture plays an important role in feature learning. Besides,
similar to Section 3.5, we also visualize the dimension selection of
AML in Fig 3 (b). We can find that AML only successfully gives
suitable dimensions in high-frequency groups (i.e., 𝐺3 to 𝐺6). In
low-frequency groups, due to the unbalanced problem, it blindly
gives high dimensions for low-frequency values. And the lower the
frequency, the worse it is.
Evolution on STE. Here, we analyze the effectiveness of STE, and
implement a variant of AMTLwithout STE, denoted as AMTL-nSTE.
From Table 4, compared with AMTL-nSTE, AMTL can archive
better performance. It demonstrates the usefulness to bridge the
information gap between training and inference phases by STE.

3.7 Time Cost Analysis
In this section, we conduct experiments to report the time cost
per epoch of different methods on IJCAI-AAC (similar conclusions
can be found in other datasets). As shown in Table 5, we find that
compared with FBE, the dimension selection methods need more
time to train the model per epoch due to the dimension selection
processes. During inference, we can directly look up the learned em-
bedding table which has adaptive dimensions without the process
of dimension selection to save time.

4 CONCLUSION
Traditional embedding learning methods usually adopt a fixed di-
mension for all features which may cause problems in space com-
plexity and performance. To address this problem, we propose a
novel dimension selection method called AMTL which produces a
mask vector to mask the undesired dimensions for different feature
values. Experimental results show that the proposed method can
archive the best performance on all tasks especially in the case
of embedding warm start, give a suitable dimension for different
features and save memories at the same time.



REFERENCES
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or

propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[3] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[4] Antonio Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James
Zou. 2019. Mixed dimension embeddings with application to memory-efficient
recommendation systems. arXiv preprint arXiv:1909.11810 (2019).

[5] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[6] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[7] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[8] Manas R Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V Le. 2020. Neural input search for large
scale recommendation models. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2387–2397.

[9] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-
aware factorization machines for CTR prediction. In Proceedings of the 10th ACM
conference on recommender systems. 43–50.

[10] Feng Li, Zhenrui Chen, Pengjie Wang, Yi Ren, Di Zhang, and Xiaoyu Zhu. 2019.
Graph Intention Network for Click-through Rate Prediction in Sponsored Search.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 961–964.

[11] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 1754–1763.
[12] Haochen Liu, Xiangyu Zhao, Chong Wang, Xiaobing Liu, and Jiliang Tang. 2020.

Automated Embedding Size Search in Deep Recommender Systems. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2307–2316.

[13] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The concrete distri-
bution: A continuous relaxation of discrete random variables. arXiv preprint
arXiv:1611.00712 (2016).

[14] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. 2020.
Compositional embeddings using complementary partitions for memory-efficient
recommendation systems. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 165–175.

[15] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[16] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[17] Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay
Gupta, Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara,
et al. 2020. Model Size Reduction Using Frequency Based Double Hashing for
Recommender Systems. In Fourteenth ACM Conference on Recommender Systems.
521–526.

[18] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida
Wang, Huiji Gao, and Bo Long. 2020. Memory-efficient Embedding for Recom-
mendations. arXiv preprint arXiv:2006.14827 (2020).

[19] Xiangyu Zhao, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, and
Jiliang Tang. 2020. AutoEmb: Automated Embedding Dimensionality Search in
Streaming Recommendations. arXiv preprint arXiv:2002.11252 (2020).

[20] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 1059–1068.


	Abstract
	1 Introduction
	2 Method
	2.1 Basic Idea
	2.2 Adaptively-Masked Twins-based Layer

	3 Experiments
	3.1 Experiment Setup
	3.2 Click-Through Rate Prediction Tasks
	3.3 Memory Cost Comparison
	3.4 Evaluation for the Warm Start
	3.5 Evaluation for Frequency
	3.6 Ablation Study
	3.7 Time Cost Analysis

	4 Conclusion
	References

