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ABSTRACT
Session-based recommendation targets next-item prediction by ex-
ploiting user behaviors within a short time period. Compared with
other recommendation paradigms, session-based recommendation
suffers more from the problem of data sparsity due to the very
limited short-term interactions. Self-supervised learning, which
can discover ground-truth samples from the raw data, holds vast
potentials to tackle this problem. However, existing self-supervised
recommendation models mainly rely on item/segment dropout to
augment data, which are not fit for session-based recommenda-
tion because the dropout leads to sparser data, creating unservice-
able self-supervision signals. In this paper, for informative session-
based data augmentation, we combine self-supervised learning
with co-training, and then develop a framework to enhance session-
based recommendation. Technically, we first exploit the session-
based graph to augment two views that exhibit the internal and
external connectivities of sessions, and then we build two distinct
graph encoders over the two views, which recursively leverage
the different connectivity information to generate ground-truth
samples to supervise each other by contrastive learning. In con-
trast to the dropout strategy, the proposed self-supervised graph
co-training preserves the complete session information and fulfills
genuine data augmentation. Extensive experiments on multiple
benchmark datasets show that, session-based recommendation can
be remarkably enhanced under the regime of self-supervised graph
co-training, achieving the state-of-the-art performance.

CCS CONCEPTS
• Information systems → Recommender systems; • Theory
of computation → Semi-supervised learning.

KEYWORDS
Self-Supervised Learning, Contrastive Learning, Session-based Rec-
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1 INTRODUCTION
Recommender systems (RS) now have been pervasive and become
an indispensable tool to facilitate online shopping and information
delivery. Most traditional recommendation approaches share a com-
mon assumption that user behaviors are constantly recorded and
available for access [50, 52]. However, in some situations, recording
long-term user profiles may be infeasible. For example, guests who
do not log in, or users who keep personal information private do
not have an accessible user profile. Session-based recommenda-
tion emerges to tackle this challenge [36], aiming at predicting the
next item only with short-term user interaction data generated in
a session. Owing to its promising prospect, in the past few years,
session-based recommendation has received considerable atten-
tion, and a number of models have been successively developed
[18, 20, 28, 29].

Early effort in this field brought Markov Chain into session-
based scenarios to capture the temporal information [28, 29]. After-
wards, deep learning exhibited overwhelming advantage of mod-
eling sequential data[56], and recurrent neural networks (RNNs)
became the dominant paradigm in this line of research [12, 13].
Recently, graph neural networks (GNNs) [42] have sparked heated
discussions across multiple fields for its unprecedented effective-
ness in solving graph-based tasks. As session-based data can also
be modeled as sequence-like graphs, there also have been a pro-
liferation of GNNs-based session-based recommendation models
[24, 27, 41, 43, 47], which outperform RNNs-based models and show
decent improvements. Despite the achievements, however, these
approaches are still compromised by the same issue - data spar-
sity. Due to the inaccessibility of the long-term user behavior data,
session-based recommenders can only leverage very limited user-
item interactions generated within a short session to refine the
corresponding user/session representations. In most cases, these
data is too few to induce an accurate user preference, leading to
sub-optimal recommendation performance.

Self-supervised learning (SSL) [21], as an emerging learning par-
adigm which can discover ground-truth samples from the raw data,
is considered to be an antidote to the data sparsity issue. Inspired
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by its great success in the areas of graph and visual representation
learning [11, 17], recent advances seek to harness SSL for improving
recommendation [43, 44, 53, 57]. The typical idea of applying SSL
to recommendation is conducting stochastic data augmentations by
randomly dropping some items/segments from the raw user-item
interaction graph/sequence to create supervisory signals, which
is analogous to the strategy used in masked language models like
BERT [7]. Following this line of thought, Bert4Rec [30] drives a
cloze objective for sequential recommendation by predicting the
random masked items in the sequence with their left and right
contexts. 𝑆3-Rec [57] designs four types of pretexts to derive super-
vision signals from the segments, items and attributes of sequential
data and then utilizes mutual information maximization to refine
item representations. Similarly, CL4SRec [44] adopts item cropping,
masking and reordering to construct different data augmentations
based on sequences for contrastive learning. With such random
dropout strategies, SSL is compatible with sequential recommenda-
tion. However, when it comes to session-based recommendation,
the same idea may not be practicable. It should be noted that, the
user interaction data generated in a session is much less than a
long-term user profile in sequential recommenders. Accordingly,
conducting dropout on session-based data would create sparser
sequences, which could be unserviceable for improving recom-
mendation performance. To address this problem, in this paper,
we propose a novel framework which combines SSL with semi-
supervised learning to create more informative self-supervision
signals to enhance session-based recommendation.

Co-training [3], as a classical semi-supervised learning para-
digm, exploits unlabeled data to improve classifiers. The basic idea
of co-training is to train two classifiers over two different data
views, and then predict pseudo-labels of unlabeled instances to
supervise each other in an iterative way. In our framework, we
first exploit the session-item graph to construct two views (item
view and session view) that exhibit the internal and external con-
nections of sessions. Then two asymmetric graph encoders (i.e.
graph convolutional networks) are built over these two views and
trained under the scheme of co-training. One of them (main en-
coder) is for recommendation and the other acts as the auxiliary
encoder to boost the former. Specifically, given a session, we regard
the items as unlabeled data. In each time, one encoder predicts
its possible next items and delivers them to the other encoder, re-
spectively. By doing so, both encoders can acquire complementary
information from each other. And then a contrastive objective is
optimized towards refining the encoders and item representations.
Meanwhile, to prevent the mode collapse (i.e. two encoders become
very similar and suggest the same item), we exploit adversarial
examples to encourage divergence between the two views. As this
co-training regime is built upon the graph views derived from the
same data source for data augmentation, and is with a contrastive
objective, we name it self-supervised graph co-training. By iterating
this process, the benefits can be two-fold: (1). with the co-training
proceeding, the generated item samples become more informative
(a.k.a. hard examples), which can bring more useful information to
each encoder compared with the dropout strategy that is only for
self-discrimination; (2). the complete data of a session is preserved
and two different aspects of connectivity information are exploited,

generating more practicable self-supervision signals. Finally, the
main encoder is significantly improved for recommendation.

Overall, the contributions of this paper are summarized as fol-
lows:

• We propose a novel self-supervised framework for session-based
recommendation which can generate more informative and prac-
ticable self-supervision signals.

• The proposed framework is model-agnostic. Ideally, the architec-
tures of the two used encoders can be diverse, which generalizes
the framework to adapt to more scenarios.

• Extensive experiments show that the proposed framework has
overwhelming superiority over the state-of-the-art baselines and
achieves statistically significant improvements on benchmark
datasets. We release the code at https://github.com/xiaxin1998/
COTREC.

The rest of this paper is organized as follows. Section 2 summa-
rizes the related work of session-based recommendation and self-
supervised learning. Section 3 presents the proposed framework.
The experimental results are reported in Section 4. Finally, Section
5 concludes this paper.

2 RELATEDWORK
2.1 Session-based Recommendation
Early studies on session-based recommendation focused on exploit-
ing temporal information from session data with Markov chain
[28, 29, 49, 58]. Zimdars et al. [58] investigated the order of tempo-
ral data based on Markov chain and used a probability decision-tree
to model sequential patterns between items. Shan et al. [29] devel-
oped a novel recommender system based on an Markov Decision
Process model with appropriate initialization and generated recom-
mendations based upon the transition probabilities between items.
With the boom of deep learning, recurrent neural networks (RNNs)
[15] have been applied to session-based recommendation models
to capture sequential order between items and achieved great suc-
cess [19, 55]. Hidasi et al. [13] was the first that applied RNNs to
model the whole session and introduced several modifications to
vanilla RNNs such as a ranking loss function and session-parallel
mini-batch training to generate more accurate recommendations.
As a follow-up study [33], Tan et al. enhanced RNNs by utilizing
the technique of data augmentation and handling the temporal
shifts of session data. Besides, NARM [18], a neural attentive rec-
ommendation algorithm, employs a hybrid encoder with attention
mechanism to model the user’s sequential behavior and capture the
user’s main purpose in the current session. In [20], a short-term
attention priority model is developed to capture both local and
global user interests with simple multilayer perceptrons (MLPs)
networks and attention mechanism.

Graph Neural Networks (GNNs) [42] are recently introduced
to session-based recommendation and exhibit great performance
[24, 27, 32, 37, 41]. Unlike RNN-based approaches, graph structure
is an essential factor in graph-based methods, aiming to learn item
transitions over session graphs. For example, SR-GNN [41] is the
first to model session sequences in session graphs and applies a
gated GNN model to aggregate information between items into
session representations. MGNN-SPred [37] builds a multi-relational
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item graph based on all session clicks to learn global item associa-
tions and uses a gated mechanism to adaptively predict the next
item. GC-SAN [47] dynamically constructs session-educed graphs
and employs self-attention networks on the graphs to capture item
dependencies via graph information aggregation. FGNN [27] re-
thinks the sequence order of items to exploit users’ intrinsic intents
using GNNs. GCE-GNN [38] aggregates item information from
both item-level and session-level through graph convolution and
self-attention mechanism. LESSR [5] proposes an edge-order pre-
serving aggregation scheme based on GRU and a shortcut graph
attention layer to address the lossy session encoding problem and
effectively capture long-range dependencies, respectively. Although
these graph-based methods outperform RNN-based methods, they
all suffer data sparsity problem due to the limited short-term profiles
in session-based scenarios.

2.2 Self-Supervised Learning in RS
Recently, self-supervised learning (SSL) [14], as a novel machine
learning paradigm which mines free labels from unlabeled data
and supervises models using the generated labels, is under the
spotlight. The information or intermediate representation learned
from self-supervised learning are expected to carry good seman-
tic or structural meanings and can be beneficial to a variety of
downstream tasks. SSL was initially applied in the fields of visual
representation learning and language modeling [2, 7], where it
augments the raw data through image rotation/clipping and sen-
tence masking. Recent advances of SSL start to focus on graphs,
and have received considerable attention [16, 35, 40]. DGI [35]
maximizes mutual information between the local patch and the
global graph to refine node representations, making them as the
ground-truth of each other. In InfoGraph [31], graph-level represen-
tations encode different aspects of data by encouraging agreement
between the representations of substructures with different scales
(e.g., nodes, edges, triangles). Hassani et al. [10] contrasted multiple
views of graphs and nodes to learn their representations. Qiu [26]
et al. designed a self-supervised graph neural network pre-training
framework to capture the structural representations of graphs by
leveraging instance discrimination and contrastive learning.

Inspired by the success of SSL in other areas, there are also
some studies that integrate self-supervised learning into sequen-
tial recommendation [22, 45, 57]. Bert4Rec [30] transfers the cloze
objective from language modeling to sequential recommendation
by predicting the random masked items in the sequence with the
surrounding contexts. 𝑆3-Rec [57] utilizes the intrinsic data corre-
lations among attribute, item, subsequence and sequence to gener-
ate self-supervision signals and enhance the data representations
via pre-training. Xie et al. [44] proposed three data augmentation
strategies to construct self-supervision signals from the original
user behavior sequences, extracting more meaningful user pat-
terns and encoding effective user representation. Ma et al. [22]
proposed a sequence-to-sequence training strategy based on la-
tent self-supervision and disentanglement of user intention behind
behavior sequences. Besides, SSL is also applied to other recom-
mendation paradigms such as general recommendation [48] and
social recommendation [51, 53]. Although these self-supervised
methods have achieved decent improvements in recommendation

performance, they are not suitable for session-based recommen-
dation for the reason that the random dropout strategy used in
these models would lead to sparser session data and unservice-
able self-supervision signals. The most relevant work to ours is
𝑆2-DHCN [43] which conducts contrastive learning between repre-
sentations learned over different hypergraphs by employing self-
discrimination without random dropout. But it cannot learn invari-
ant representations against the data variance for its fixed ground-
truths, leading to merely slight improvements. Besides, Yu et al.
[51] recently proposed a self-supervised tri-training framework
that leverages different aspects of social information to generate
complementary self-supervision signals to boost recommendation.
As the first work to combine SSL with multi-view semi-supervised
learning for recommendation, it gives us clues about applying co-
training to session-based recommendation.

3 PROPOSED METHOD
3.1 Preliminaries
3.1.1 Notations. Let 𝐻 = {𝑖1, 𝑖2, 𝑖3, ..., 𝑖𝑁 } denote the set of items,
where 𝑁 is the number of items. Each session is represented as
a sequence 𝑠 = [𝑖𝑠,1, 𝑖𝑠,2, 𝑖𝑠,3, ..., 𝑖𝑠,𝑚] ordered by timestamps and
𝑖𝑠,𝑘 ∈ 𝐻 (1 ≤ 𝑘 ≤ 𝑚) represents an interacted item of an anony-
mous user within the session 𝑠 . For learning presentations, we
embed each item 𝑖 ∈ 𝐼 into the same space and let x(𝑙)

𝑖
∈ R𝑑 (𝑙 )

denote the representation of item 𝑖 of dimension 𝑑 (𝑙) in the 𝑙-th
layer of a deep neural network. The representation of the whole
item set is denoted as X(𝑙) ∈ R𝑁×𝑑 (𝑙 )

, and 𝑿 (0) is randomly initial-
ized with uniform distribution. Each session 𝑠 is represented by a
vector s. The task of session-based recommendation is to predict
the next item, namely 𝑖𝑠,𝑚+1, for any given session 𝑠 . Given 𝐼 and 𝑠 ,
the output of session-based recommendation model is a ranked list
𝑦 = [𝑦1, 𝑦2, 𝑦3, ..., 𝑦𝑁 ] where 𝑦𝑖 (1 ≤ 𝑖 ≤ 𝑁 ) is the corresponding
predicted probability of item 𝑖 . The top-K items (1 ≤ 𝐾 ≤ 𝑁 ) with
highest probabilities in 𝑦 will be selected as the recommendations.

3.1.2 Co-Training. Co-Training is a classical semi-supervised learn-
ing paradigm to exploit unlabeled data [3, 6, 9]. Under this regime,
two classifiers are separately trained on two views and then ex-
change confident pseudo labels of unlabeled instances to construct
additional labeled training data for each other. Typically, the two
views are two disjoint sets of features and can provide complemen-
tary information to each other. Blum et al. [3] first proved that
co-training can bring significant benefits when the two views are
sufficient and conditionally independent. However, the required
conditional dependence of two views is hard to be satisfied in many
cases. To relax this assumption, Abney et al. [1] found that weak
dependence can also enable co-training success, which lifts the
dependence restriction and makes co-training easily applied. Fur-
thermore, co-training can also be applied when there is only single
data representation if the data is processed by independent pre-
diction models, such as two different classifiers [46]. It should be
mentioned that there have been several attempts that combine co-
training and recommendation [6, 54]. However, these methods are
all based on shallow or KNN-based models, leaving much space to
be explored by the graph neural models coupled with SSL.
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Figure 1: An overview of the proposed COTREC framework.

3.2 Self-Supervised Graph Co-Training
In this section, the proposed self-supervised graph CO-Training
framework for session-based RECommendation (COTREC) is pre-
sented. The overview of COTREC is illustrated in Figure 1.

3.2.1 View Augmentation. To conduct co-training, we first derive
two different views from the session data, i.e. item view and ses-
sion view, by exploiting the intra- and inter-connectivity patterns
of sessions. The item-view captures the item-level connectivity
information while the session view encodes the session-level struc-
tural patterns. Concretely, the item view is educed by aligning all
sessions. In other words, any two items (𝑖𝑎 and 𝑖𝑏 ) which are con-
nected in a session also get connected as nodes in the item view
with a weighted directed edge 𝐸𝑎𝑏 , counting how many times they
are adjacent in different sessions in the form of [𝑖𝑎, 𝑖𝑏]. As for the
session view, two sessions (𝑠 𝑗 and 𝑠𝑘 ) are connected as nodes with
a weighted undirected edge 𝐸 𝑗𝑘 obtained by using the number of
shared items to divide the number of total items in the two sessions
(shown in the left part of Figure 1). These two views are able to
provide complementary information for each other while keeping
independent and exhibiting divergence to some degree, which are
subject to the weak dependence constraint in [1]. To make an anal-
ogy, if we intuitively consider the session data presented in the left
side of Fig.1 as the complete information, which is analogous to
the whole picture in the task of image recognition, then construct-
ing these two views corresponds to the patch clipping in visual
self-supervised learning [4]. The augmented parts differ but inherit
essential information from the original data, which can help learn
more generalizable representations through a self-supervised task.

3.2.2 Learning Graph Encoders over Augmented Views. After the
view construction, we have two types of graphs. Although we
aim to devise a model-agnostic framework that can drive a multi-
tude of session-based neural graph recommendation models, for
a concrete architecture than can fulfill the capability of the pro-
posed self-supervised graph co-training, we construct two different
graph encoders with graph convolutions over the views as the base.
However, the technical details can be modified to adapt to more
scenarios.

Item View Encoding. The item encoder with a simplified graph
convolution layer for the item view is defined as:

X(𝑙+1)
𝐼

= D̂−1
𝐼 Â𝐼X

(𝑙)
𝐼

W𝑙
𝐼 , (1)

where Â𝐼 = A𝐼 + I and I is the identity matrix, D̂𝐼 ,𝑝,𝑝 =
∑𝑚
𝑞=1 Â𝐼 ,𝑝,𝑞

and A𝐼 are the degree matrix and the adjacencymatrix, X(𝑙)
𝐼

and W𝑙
𝐼

represent the 𝑙-th layer’s item embeddings and parameter matrix
of the item view, respectively. Here we do not use the non-linear
function since it has been proved redundant in recommendation
[39, 53]. After passing X(0) through 𝐿 graph convolution layers,
we average the item embeddings obtained from each layer to be
the final learned item embeddings X𝐼 =

1
𝐿+1

∑𝐿
𝑙=0 X(𝑙)

𝐼
. Although

the graph convolution can perfectly capture item connections, it
cannot encode the order of items in a specific session. Following
[38], we concatenate the reversed position embeddings with the
learned item representations by a learnable position matrix P𝑟 =

[p1, p2, p3, ..., pm], where𝑚 is the length of the current session and
pm ∈ R𝑑 represents the vector of position𝑚. The embedding of
𝑡-th item in session 𝑠 = [𝑖𝑠,1, 𝑖𝑠,2, 𝑖𝑠,3, ..., 𝑖𝑠,𝑚] is:

x𝑡∗𝐼 = tanh
(
W1

[
x𝑡𝐼 ∥p𝑚−𝑡+1

]
+ b

)
, (2)

where W1 ∈ R𝑑×2𝑑 , and 𝑏 ∈ R𝑑 are learnable parameters.
Session embeddings can be obtained by aggregating representa-

tions of items contained in that session. A soft-attention mechanism
is often used in session-based recommendation methods where dif-
ferent items should have different priorities when learning session
embeddings.We follow the strategy used in GCE-GNN [38] to refine
the embedding of session 𝑠 = [𝑖𝑠,1, 𝑖𝑠,2, 𝑖𝑠,3, ..., 𝑖𝑠,𝑚]:

𝛼𝑡 = f⊤𝜎
(
W2x𝑠 + W3x𝑡∗𝐼 + c

)
, \𝐼 =

𝑚∑
𝑡=1

𝛼𝑡x𝑡∗𝐼 (3)

where x𝑠 is the embedding of session 𝑠 and here it is obtained
by averaging the embeddings of items within the session 𝑠 , i.e.
x𝑠 = 1

𝑚

∑𝑚
𝑡=1 x𝑚

𝐼
. Session representation \𝐼 is represented by ag-

gregating item embeddings considering their corresponding im-
portance. f, c ∈ R𝑑 , W2 ∈ R𝑑×𝑑 and W3 ∈ R𝑑×𝑑 are attention
parameters used to learn the item weight 𝛼𝑡 .
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Session View Encoding. The session view depicts item and ses-
sion relations from the other perspective. Similarly, the session
encoder conducts graph convolution on the session graph. As there
are no items involved in the session graph, we first initialize the
session embeddings 𝚯(0)

𝑆
by averaging the corresponding embed-

dings of items of each session in X(0) . And the graph convolution
on session graph is defined as followed:

Θ(𝑙+1)
𝑆

= D̂−1
𝑆 Â𝑆Θ(𝑙)

𝑆
W(𝑙)

𝑆
, (4)

where Â𝑆 = A𝑆 + I, A𝑆 is the adjacency matrix, and D̂𝑆 is the
corresponding degree matrix, Θ(𝑙)

𝑆
and W(𝑙)

𝑆
represent the 𝑙-th

layer’s session embeddings and the parameter matrix, respectively.
Similarly, we pass initialized session embeddings into 𝐿 graph con-
volution layers to learn session-level information. The final session
representations are obtained by averaging 𝐿 embeddings learned
at different layers, which is formulated as Θ𝑆 = 1

𝐿+1
∑𝐿
𝑙=0 Θ(𝑙)

𝑆
.

3.2.3 Mining Self-Supervision Signals with Graph Co-Training. In
this section, we show how graph co-training mines informative
self-supervision signals to enhance session-based recommendation.

Recall that, in the last two subsections, we build two graph
encoders over two different views that can provide complementary
information to each other. Therefore, it is natural to refine each
encoder by exploiting the information from the other view. This
can be achieved by following the regime of co-training. Given a
session 𝑝 in the session view, we predict its positive and negative
next-item samples using its representation learned over the item
view:

y𝑝
𝐼
= Softmax

(
𝑠𝑐𝑜𝑟𝑒

𝑝

𝐼

)
, 𝑠𝑐𝑜𝑟𝑒

𝑝

𝐼
= X𝐼\

𝑝

𝐼
(5)

where \𝑝
𝐼
is the representation of session 𝑝 in the item view, and

y𝑝
𝐼

∈ R𝑁 denotes the predicted probability of each item being
recommended to session 𝑝 in the item view. \𝑝

𝐼
can be seen as a

linear classifier, and X𝐼 is seen as the unlabeled sample set.
With the computed probabilities, we can select items with the

top-K highest confidence as the positive samples which act as the
augmented ground-truths to supervise the session encoder. For-
mally, the positive sample selection is as follows:

𝑐
𝑝+

𝑆
= top-𝐾

(
y𝑝
𝐼

)
. (6)

As for the way to select negative samples, a straightforward idea
is to take the items with the lowest scores. However, such a way
can only choose easy samples which contribute little. Instead, we
randomly select 𝐾 negative samples from the items ranked in top
10% in y𝑝

𝐼
excluding the positives to construct 𝑐𝑝

−

𝑆
. These items can

be seen as hard negatives which can contribute enough information,
and meanwhile are less likely to fall into the set of false negatives
which would mislead the learning. Analogously, we use the similar
way to select informative samples for the item encoder,

y𝑝
𝑆
= Softmax

(
𝑠𝑐𝑜𝑟𝑒

𝑝

𝑆

)
, 𝑠𝑐𝑜𝑟𝑒

𝑝

𝑆
= X(0)\𝑝

𝑆
(7)

where the main difference is that when selecting the top-𝑘 item
samples, 𝑿 (0) is used rather than 𝑿𝐼 because the session encoder
does not output convolved item embeddings.

In each training batch, the positive and negative pseudo-labels
for each session in each view are iteratively reconstructed and then

are delivered to the other view as the possible next item for refining
session and item representations. The intuition behind this process
is that, the item samples, which receive high confidence to be the
next-item in one view, should also be valuable in the other view.
Iterating this process is expected to generate more informative
examples (a.k.a. harder examples). In turn, the encoders evolve
under the supervision of informative examples as well, which will
recursively distill harder examples.

3.2.4 Contrastive Learning. With the generated pseudo-labels, the
self-supervised task used to refine encoders can be conducted
through a contrastive objective. In session-based scenarios, we
assume that the last clicked item in a session is the most related to
the next item. Therefore, we can maximize (minimize) the agree-
ment between the representations of the last-clicked item and the
predicted items samples, accompanied with the given session rep-
resentation as the session context. Formally, given a session 𝑝 and
the predicted ground-truths, we follow InfoNCE [23], which can
maximize the lower bound of mutual information between the item
pairs, as our learning objective:

L𝑠𝑠𝑙 = − log

∑
𝑖∈𝑐𝑝

+
𝐼

𝜓

(
x𝑙𝑎𝑠𝑡
𝐼

, 𝜽
𝑝

𝐼
, x𝑖

𝐼

)
∑
𝑖∈𝑐𝑝

+
𝐼

𝜓

(
x𝑙𝑎𝑠𝑡
𝐼

, 𝜽
𝑝

𝐼
, x𝑖

𝐼

)
+∑

𝑗 ∈𝑐𝑝
−

𝐼

𝜓

(
x𝑙𝑎𝑠𝑡
𝐼

, 𝜽
𝑝

𝐼
, x𝑗

𝐼

)
− log

∑
𝑖∈𝑐𝑝

+
𝑆

𝜓

(
x𝑙𝑎𝑠𝑡(0) , 𝜽

𝑝

𝑆
, x𝑖(0)

)
∑
𝑐∈𝑐𝑝

+
𝑆

𝜓

(
x𝑙𝑎𝑠𝑡(0) , 𝜽

𝑝

𝑆
, x𝑖(0)

)
+∑

𝑗 ∈𝑐𝑝
−

𝑆

𝜓

(
x𝑙𝑎𝑠𝑡(0) , 𝜽

𝑝

𝑆
, x𝑗

(0)

)
(8)

where x𝑙𝑎𝑠𝑡 is the embedding of the last-clicked item of the given
session,𝜓 (𝒙1, 𝒙2, 𝒙3) = exp (𝑓 (𝒙1 + 𝒙2, 𝒙3 + 𝒙2) /𝜏) where 𝜏 is the
temperature to amplify the effect of discrimination (we empirically
use 0.2 in our experiments), and 𝑓 (·) : R𝑑 ×R𝑑 ↦−→ R is the discrim-
inator function that takes two vectors as the input and then scores
the agreement between them. We simply implement the discrimi-
nator by applying the cosine operation. Through the contrastive
learning between the positive and negative pairs, the two views
can exchange information and the last-clicked item representation
can learn to infer related items with a session context, and thus
item and session representations are refined.

In the vanilla co-training, the generated pseudo-labels are re-
used in subsequent training as training labels. However, that way
will make our framework less efficient because adding pseudo-labels
will lead to adjacency matrix reconstruction in each iteration. Also,
it may misguide the training from then on when the pseudo-labels
introduce false information because the added pseudo-labels would
not be removed. Therefore, in our model, we decide not to add
pseudo-labels into training set in view of the above considerations.
Besides, compared with the dropout based SSL methods [44, 57]
which leverage the fragmentary sequences as self-supervision sig-
nals, our idea has the advantage of preserving the complete session
information and fulfilling genuine label augmentation, and hence
it is more suitable for session-based scenarios.

3.2.5 Divergence Constraint in Co-Training. In our framework, the
two data views for co-training are derived from the same data
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source by exploiting structural information in different aspects. On
the one hand, this augmentation does not require two sufficient and
independent data sources, which is the advantage. But on the other
hand, it somehowmight lead to the mode collapse problem, i.e., two
encoders become similar and generated the same ground-truths
when given the same session after a number of learning iterations.
Therefore, it is necessary to make the two encoders differ to some
degree. Following [25], we impose the divergence constraint on the
self-supervised graph co-training regime by integrating adversarial
examples into the training.

Theoretically, the adversarial examples targeting one encoder
[8] would mislead it to generate wrong predictions. However, if the
two encoders are trained to be resistant to the adversarial examples
generated by each other and still output the correct predictions,
we can manage to achieve the goal of keeping them different. We
define the divergence constraint as follows:

Ldiff =𝐾𝐿

(
𝑃𝑟𝑜𝑏𝐼 (X𝐼 ), 𝑃𝑟𝑜𝑏𝑆

(
X𝐼 + Δ𝐼

𝑎𝑑𝑣

))
+ 𝐾𝐿

(
𝑃𝑟𝑜𝑏𝑆 (X𝐼 ), 𝑃𝑟𝑜𝑏𝐼

(
X𝐼 + Δ𝑆

𝑎𝑑𝑣

))
,

(9)

where 𝑃𝑟𝑜𝑏𝐼 (·) and 𝑃𝑟𝑜𝑏𝑆 (·) represent the probabilities of each
item to be recommended to a given session 𝑝 , which are computed
by two encoders: 𝑃𝑟𝑜𝑏𝐼 (X𝐼 ) = Softmax(𝑿𝐼𝜽

𝑝

𝐼
), and 𝑃𝑟𝑜𝑏𝑆 (X𝐼 ) =

Softmax(𝑿𝐼𝜽
𝑝

𝑆
), Δ𝐼

𝑎𝑑𝑣
and Δ𝑆

𝑎𝑑𝑣
represent the adversarial pertur-

bations on the item embeddings with regard to 𝜽
𝑝

𝐼
and 𝜽

𝑝

𝑆
, re-

spectively, and 𝐾𝐿(·) denotes the KL divergence. To make it clear,
𝑃𝑟𝑜𝑏𝑆

(
X𝐼 + Δ𝐼

𝑎𝑑𝑣

)
is the probability distribution produced by the

session encoder when 𝑿𝐼 is perturbed by Δ𝐼
𝑎𝑑𝑣

. If the session en-
coder is immune to Δ𝐼

𝑎𝑑𝑣
that is destructive to the item encoder, it

will output a probability distribution similar to 𝑃𝑟𝑜𝑏𝐼 (X𝐼 ) due to
shared information, resulting in a smaller loss of Eq. (9), otherwise
not.

To create adversarial examples, we adopt the FGSM method
proposed in [8], which adds adversarial perturbations on model
parameters through fast gradient computation. In our paper, we add
adversarial perturbations on item embeddings. The perturbations
Δ are updated as:

Δ𝑎𝑑𝑣 = 𝜖
Γ

∥Γ∥ where Γ =
𝜕𝑙𝑎𝑑𝑣 (𝑦 | x + Δ)

𝜕Δ
. (10)

𝑙𝑎𝑑𝑣 (𝑦) is the loss of aversarial examples and 𝜖 is the control pa-
rameter (𝜖 is 0.5 on Diginetica and 0.2 on Tmall and RetailRocket
in our experiments).

3.2.6 Model Optimization. Based on the learned representations,
the score of each candidate item 𝑖 ∈ 𝐼 to be recommended for a
session 𝑠 is computed by doing inner product:

ẑ𝑖 = \𝑠⊤𝐼 x𝑖 . (11)

Since the item view can reflect the item connectivity in a finer-
grained granularity, we use the encoder over the item view as the
main encoder to predict the final candidate items for recommenda-
tion. After that, a softmax function is applied:

ŷ = softmax(ẑ) . (12)

Algorithm 1: The whole procedure of COTREC
Input: Sessions S, node embeddings 𝑿 ;
Output: Recommendation lists

1 Construct item view and session view ;
2 for each iteration do
3 for each batch do
4 Learn item and session representations through Eq.

(1) - (4) ;
5 for each session 𝑠 do
6 Predict the probabilities of items being the

positive examples in different views and obtain
positive and negative examples with Eq.(5) - Eq.
(7);

7 Compute self-supervised learning loss of two
views via Eq.(8);

8 end
9 Add divergence constraint by following Eq. (9) - (10);

10 Jointly optimize the overall objective in Eq. (14);
11 end
12 end

We then use cross entropy loss function to be the learning objective:

L𝑟 = −
𝑁∑
𝑖=1

y𝑖 log (ŷ𝑖 ) + (1 − y𝑖 ) log (1 − ŷ𝑖 ) . (13)

y is the one-hot encoding vector of the ground truth. For simplicity,
we leave out the 𝐿2 regularization terms. Finally, we unify the
recommendation task with the auxiliary SSL task. The total loss 𝐿
is defined as:

L = L𝑟 + 𝛽L𝑠𝑠𝑙 + 𝛼Ldiff , (14)
where 𝛼, 𝛽 are hyperparameters to control the scale of the self-
supervised graph co-training and view difference constraint. It
should be noted that, we jointly optimize the three throughout the
training. Finally, the whole procedure of COTREC is summarized
in Algorithm 1.

Dataset Tmall RetailRocket Diginetica
training sessions 351,268 433,643 719,470
test sessions 25,898 15,132 60,858
# of items 40,728 36,968 43,097

average lengths 6.69 5.43 5.12
Table 1: Dataset Statistics

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. We evaluate our model on three real-world bench-
mark datasets: Tmall1, RetailRocket2 and Diginetica3, which are of-
ten used in session-based recommendation methods. Tmall dataset
1https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
2https://www.kaggle.com/retailrocket/ecommerce-dataset
3http://cikm2016.cs.iupui.edu/cikm-cup/
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Method Tmall RetailRocket Diginetica

P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20
FPMC 13.10 7.12 16.06 7.32 25.99 13.38 32.37 13.82 15.43 6.20 26.53 6.95

GRU4REC 9.47 5.78 10.93 5.89 38.35 23.27 44.01 23.67 17.93 7.33 29.45 8.33
NARM 19.17 10.42 23.30 10.70 42.07 24.88 50.22 24.59 35.44 15.13 49.70 16.17
STAMP 22.63 13.12 26.47 13.36 42.95 24.61 50.96 25.17 33.98 14.26 45.64 14.32
SR-GNN 23.41 13.45 27.57 13.72 43.21 26.07 50.32 26.57 36.86 15.52 50.73 17.59
GCE-GNN 28.01 15.08 33.42 15.42 - - - - 41.16 18.15 54.22 19.04
𝑆2-DHCN 26.22 14.60 31.42 15.05 46.15 26.85 53.66 27.30 39.87 17.53 53.18 18.44
COTREC 30.62 17.65 36.35 18.04 48.61 29.46 56.17 29.97 41.88 18.16 54.18 19.07

Table 2: Performances of all comparison methods on three datasets.

comes from IJCAI-15 competition, which contains anonymized
user’s shopping logs on Tmall online shopping platform. Retail-
Rocket is a dataset on a Kaggle contest published by an e-commerce
company, which contains the user’s browsing activity within six
months. Diginetica dataset describes the music listening behav-
ior of users, and Diginetica comes from CIKM Cup 2016. For con-
venience of comparing, we follow the experiment environment
in [38, 41]. Specifically, we filter out all sessions whose length
is 1 and items appearing less than 5 times. Latest data (such as,
the data of last week) is set to be test set and previous data is
used as training set. Then, we augment and label the training and
test datasets by using a sequence splitting method, which gen-
erates multiple labeled sequences with the corresponding labels
( [𝑖𝑠,1], 𝑖𝑠,2), ( [𝑖𝑠,1, 𝑖𝑠,2], 𝑖𝑠,3), ..., ( [𝑖𝑠,1, 𝑖𝑠,2, ..., 𝑖𝑠,𝑚−1], 𝑖𝑠,𝑚) for every
session 𝑠 = [𝑖𝑠,1, 𝑖𝑠,2, 𝑖𝑠,3, ..., 𝑖𝑠,𝑚]. Note that the label of each se-
quence is the last click item in it. The statistics of the datasets are
presented in Table 1.

4.1.2 Baseline Methods. We compare COTREC with the following
representative methods:

• FPMC [28] is a sequential method based on Markov Chain. In
order to adapt it to session-based recommendation, we do not
consider the user latent representations when computing recom-
mendation scores.

• GRU4REC [13] utilizes a session-parallel mini-batch training
process and adopts ranking-based loss functions to model user
sequences.

• NARM [18]: is a RNN-based state-of-the-art model which em-
ploys attention mechanism to capture user’s main purpose and
combines it with the sequential behavior to generate the recom-
mendations.

• STAMP [20]: adopts attention layers to replace all RNN encoders
in the previouswork and employs the self-attentionmechanism[34]
to enhance the session-based recommendation performance.

• SR-GNN [41]: applies a gated graph convolutional layer to obtain
item embeddings and also employs a soft-attention mechanism
to compute the session embeddings.

• GCE-GNN [38]: constructs two types of session-educed graphs
to capture local and global information in different levels.

• S2-DHCN [43]: constructs two types of hypergraphs to learn
inter- and intra-session information and uses self-supervised
learning to enhance session-based recommendation.

4.1.3 Evaluation Metrics. Following [38, 41], we use P@K (Preci-
sion) and MRR@K (Mean Reciprocal Rank) to evaluate the recom-
mendation results where K is 10 or 20.

4.1.4 Hyper-parameters Settings. Following previous works, we
set the embedding size to 100, the batch size for mini-batch to 100,
and the 𝐿2 regularization to 10−5. In our model, all parameters
are initialized with the Gaussian Distribution N(0, 0.1). We use
Adam with the learning rate of 0.001 to optimize our model. For
the number of layers of graph convolution on the three datasets, a
three-layer setting achieves the best performance. For the baseline
models, we refer to their best parameter setups reported in the
original papers and directly report their results if available, since
we use the same datasets and evaluation settings.

4.2 Experimental Results
4.2.1 Overall Performance. The experimental results of overall
performance are reported in Table 2, where we highlight the best
results of each column in boldface. From the results, we can draw
some conclusions:
• Recent methods that consider temporal information (such as,
GRU4REC, NARM, STAMP, SR-GNN) outperform traditional
methods (FPMC) that do not, demonstrating the importance of
capturing sequential dependency between items in session-based
recommendation. Besides, among the methods based on RNNs-
like units (RNN, LSTM, GRU), NRAM and STAMP achieve better
performance than GRU4REC. This is because NRAM and STAMP
not only utilize recurrent neural networks to model sequential
behavior, but also utilize an attention mechanism to learn im-
portance of each item when learning session representations.
GRU4REC which only uses GRU cannot handle the shift of user
preference.

• Graph-based baseline methods all outperform RNN-based meth-
ods, showing the great capacity of graph neural networks in
modeling session data. Among them, GCE-GNN obtains higher
accuracy than SR-GNN. This proves that capturing different lev-
els of information (inter- and intra-session information) helps
accurately predict user intent in session-based recommendation.
𝑆2-DHCN also utilize both inter- and intra-session information
in hypergraph modeling and achieves promising performance.
However, compared to GCE-GNN, 𝑆2-DHCN has lower results
on Tmall and Diginetica, showing that self-discrimination based
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SSL method is not so successful in improving session-based rec-
ommendation performance, which is in line with our motivation.

• Our proposed COTREC almost outperforms all the baselines on
all the datasets. Particularly, it beats other models by a large mar-
gin on Tmall, showing the effectiveness of the self-supervised gr-
pah co-training when applied to real e-commerce data. Compared
with the other self-supervised model 𝑆2-DHCN, the advantage
is also obvious. Considering that 𝑆2-DHCN and COTREC both
have a two-branch architecture, we think that the improvements
mainly derive from the multi-instance contrastive learning in Eq.
(8) while 𝑆2-DHCN only conducts self-discrimination contrastive
learning. Compared with another strong baseline GCE-GNN,
COTREC is competitive in terms of both performance and effi-
ciency. Although GCE-GNN can achieve comparable results on
Diginetica, its more complex structure makes it suffer from the
out-of-memory problem when performing on RetailRocket on
our RTX 2080 Ti GPU. Besides, its performance is much lower
than that of COTREC on Tmall.

4.2.2 Ablation Study. In this section, to investigate the contribu-
tion of each component in our model, we develop four variant ver-
sions of COTREC:COTREC-base, base-NP, base-NA,COTREC-
ND, and we compare the four variants with the complete COTREC
model on Tmall and Diginetica. In COTREC-base, we only use the
item view to model session data, removing the session view and
the self-supervised graph co-training. In base-NP, we remove the
reversed position embeddings. base-NAmeans that we remove the
soft-attention mechanism and replace it with averaging item repre-
sentations as the representation of each session. In COTREC-ND,
we only use self-supervised co-training without the divergence
constraint. We show the results of these four variants in Figure 2.

From Figure 2, we can observe that each component consistently
contributes on both datasets. The self-supervised co-training im-
proves the base model the most, serving as the driving force of the
performance improvement. When removing the self-supervised
co-training, we can observe a remarkable performance drop on
both the two metrics. Besides, the divergence constraint is effec-
tive to prevent mode collapse in co-training process. Without this
module, the performance of COTREC is even worse than that of
the base on Diginetica. Note that on Tmall, base-NP outperforms
COTREC-base, proving that a strict temporal order of items may
negatively influence the performance in some cases, which is in
line with the our previous observation in 𝑆2-DHCN. According
to the results of base-NA, it is shown that learning different item
importance across sessions is better than directly averaging repre-
sentations of contained items for learning session representations
in session-based recommendation.

Method Tmall Diginetica

P@20 M@20 P@20 M@20
COTREC-base 32.11 17.21 52.66 18.19
base-DHCN 32.94 16.22 52.02 17.70
base-MASK 32.54 16.37 51.61 17.64
COTREC 36.35 18.04 54.18 19.07
Table 3: Comparisons of Different SSL Methods.
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Figure 2: Ablation Study.

4.2.3 Comparison with Different SSL Methods. To further inves-
tigate the effectiveness of the proposed self-supervised graph co-
training, we also compare it with other different SSL methods that
are based on self-discrimination and random dropout to gener-
ate self-supervision signals on Tmall and Diginetica. The first is
the method proposed in 𝑆2-DHCN. DHCN proposes to capture
item-level and session-level information and maximize mutual in-
formation between the session representations learned at the two
levels. Positive examples are two types of session representation
of the same session, whereas negative pairs are representations of
different sessions. The second compared SSL method is based on
the item mask, which is an often used strategy where some items
are randomly dropped in each session. The generated new session
can be the positive example and other sessions can be negative sam-
ples. For a fair comparison, we employ these SSL strategies on the
base model of COTREC. So we name the three as base-COTREC,
base-DHCN, base-MASK. Besides, these SSL methods are used
to establish auxiliary tasks in the model optimization and we use a
hyperparameter to control the magnitude of SSL. Finally, we use
grid-search to adjust the parameter to ensure the best performances
of them, and the best results are shown in Table 3.

From Table 3, we can see that, only self-supervised graph co-
training can boost the recommendation performance on both datasets
and it also achieves the best performance.While the other twometh-
ods can only take effect on Tmall, which demonstrates that self-
supervised graph co-training ismore effective than self-discriminati-
on and dropout-based methods. We also find that the strategy of
item mask is the least effective in most cases, proving that masked
sub-sequences can only generate sub-optimal self-supervision sig-
nals in the scenario of session-based recommendation due to the
very limited behaviors.

4.2.4 Handling Different Session Lengths. In real world situations,
sessions with various lengths are common, so it is interesting to
know how stable our COTREC as well as the baseline models are
when dealing with them, and it is also a critical indicator for pro-
duction environments. To evaluate this, we follow [20, 41] to split
the sessions of Tmall and Diginetica into two groups with different
lengths and name them as Short and Long. Short contains sessions
whose lengths are less than or equal to 5, while Long contains
sessions whose lengths are larger than 5. Then, we compare the
performance of COTREC with some representative baselines, i.e.,
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Figure 3: P@20 results on Long and Short.
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Figure 4: Hyperparameter Analysis.

STAMP, SR-GNN, GCE-GNN and 𝑆2-DHCN in terms of Prec@20
on Short and Long. Results in Figure 3 show that COTREC almost
outperforms all the baseline models on both datasets with different
session lengths. It demonstrates the adaptability of COTREC in
real-world session-based recommendation. Besides, it is shown that
the performance on the short sessions is better than that on the
long sessions.

4.2.5 The Impact of Hyperparameters. In COTREC, we have two
hyperparameters to control the magnitude of the SSL taks and the
effect of the divergence constraint, i.e. 𝛽 and 𝛼 . To investigate the
influence of them, we report the performance with a set of repre-
sentative 𝛽 values in { 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1} and
𝛼 values in {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5} on Tmall and
Diginetica. We fix the other parameter as 0.005 when investigating
𝛽 or 𝛼 . According to the results in Figure 4, our model achieves
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Figure 5: The impacts of the number of layer.

the best performance when jointly trained with the SSL taks and
the divergence constraint. On both Tmall and Diginetica, the best
setting is 𝛽 = 0.05 and 𝛼 = 0.005. When using large 𝛼 , a huge per-
formance drop is observed, demonstrating that when there is large
divergence between two encoder, it is hard for them to supervise
each other.

4.2.6 The impact of the number of layers. To investigate the impact
of the number of layers in graph convolution network, we range the
number of layers in {1, 2, 3, 4, 5}. According to the results in Figure 5,
we can see that for both Tmall and Diginetica, a three-layer setting
achieves the best performance. When the number becomes larger,
performance will drop due to the over-smoothing issue. Besides,
an obvious performance fluctuation is observed on Diginetica.

5 CONCLUSION
Self-supervised learning is an emerging machine learning para-
digm which exploits unlabeled data by generating ground-truth
labels from the raw data itself and recently has been utilized in
many fields to enhance deep learning models. Existing SSL-based
recommendation methods usually adopt random dropout-based
self-discrimination to generate self-supervision signals. However,
we argue that it cannot adapt to session-based recommendation be-
cause it would create sparser data and cannot leverage informative
self-supervision signals from other entities. In this paper, we de-
sign a self-supervised graph co-training framework to address this
issue. In our framework, co-training can iteratively selects evolving
pseudo-labels as informative self-supervision examples for each
view to improve the session-based recommendation. Extensive ex-
periments and empirical studies demonstrate the effectiveness of
our framework and show its superiority over other recent baselines.
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