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Abstract

Shared-account Cross-domain Sequential Recom-
mendation (SCSR) is the task of recommending the
next item based on a sequence of recorded user
behaviors, where multiple users share a single ac-
count, and their behaviours are available in multiple
domains. Existing work on solving SCSR mainly
relies on mining sequential patterns via RNN-based
models, which are not expressive enough to capture
the relationships among multiple entities. More-
over, all existing algorithms try to bridge two do-
mains via knowledge transfer in the latent space,
and the explicit cross-domain graph structure is un-
exploited. In this work, we propose a novel graph-
based solution, namely DA-GCN, to address the
above challenges. Specifically, we first link users
and items in each domain as a graph. Then, we de-
vise a domain-aware graph convolution network to
learn user-specific node representations. To fully
account for users’ domain-specific preferences on
items, two novel attention mechanisms are further
developed to selectively guide the message passing
process. Extensive experiments on two real-world
datasets are conducted to demonstrate the superior-
ity of our DA-GCN method.

1 Introduction

Cross-domain Sequential Recommendation (CSR) is a rec-
ommendation task that aims at recommending the next item
via leveraging a user’s historical interactions from multiple
domains. CSR is gaining immense research attention nowa-
days as users need to sign up for different platforms to ac-
cess domain-specific services, e.g., music subscription and
food delivery. In this work, we study CSR in an emerg-
ing yet challenging scenario, SCSR, where multiple indi-
vidual users share a single account and their interaction be-
haviors are recorded in multiple domains [Lu et al., 2019].
We consider the shared-account scenario because it is in-
creasingly common that people share accounts with others in
many applications. For example, members of a family tend
to share an account for watching movies (e.g., Netflix) and
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online shopping (e.g., Amazon). Consequently, generating
accurate recommendations is much more challenging in this
case because of the mixture of diverse users’ interests within
an interaction sequence [Yin et al., 2020; Yin et al., 2019;
Guo et al., 2020]. Furthermore, though in a single-user sce-
nario, data from two domains might collaboratively help un-
cover her/his preferences, the existence of shared accounts
will instead amplify the noise in the interaction data and im-
pede the sequential recommendation accuracy.

Recently, several studies have been focused on recom-
mendation with either shared-account or cross-domain set-
tings, very few of them address SCSR that simultane-
ously considers both aspects. In prior work on shared ac-
counts [Bajaj and Shekhar, 2016], a common approach is to
capture the user relationships under the same account with
latent representations, but none of them consider the cross-
domain context, and are hence inapplicable to SCSR. Despite
that cross-domain recommenders [Zhuang et al., 2018], par-
tially fit this scenario, the cross-domain knowledge is implic-
itly transferred in the latent space, the explicit structural infor-
mation bridging two domains are largely unexplored. Zhao
et al. [2019] proposed a graph-based model as a solution,
but their work ignores the important sequential information
and relies on explicit user ratings that are not usually avail-
able in both domains. However, those cross-platform meth-
ods are not designed to cope with entangled user preferences
on shared accounts. One prior work on SCSR is the π-net
method [Ma et al., 2019], which formulates SCSR as a par-
allel sequential recommendation problem that is solved by
an information-sharing network. Another related work is the
PSJNet method [Ren et al., 2019], which improves the π-net
using a split-join strategy. However, these RNN-based meth-
ods overwhelmingly target on discovering sequential depen-
dencies, and have limited capability for capturing the com-
plex relationships among associated entities (i.e., users and
items) in both domains. As a result, this limits the expres-
siveness of learned user and item representations, and also
overlooks the explicit structural information (e.g., item-user-
item paths) linking two domains.

To address the above challenges, we propose a novel graph-
based solution, namely Domain-Aware Graph Convolutional
Network (DA-GCN), for SCSR. Specifically, to model the
complicated interaction relationships, we first construct a
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Cross-Domain Sequence (CDS) graph to link different do-
mains, where users and items in each domain are nodes
and their associations are edges. Thereafter, to adapt to the
scattered user preferences on shared accounts, we suppose
there are H latent users under each account and leverage
the message-passing strategy in a domain-aware graph con-
volution network to aggregate the information passed from
directly linked neighbors. Then, node embeddings of users
and items are learned by passing information from connected
neighbor nodes. Though interactions with items are recorded
at the account level, items in different domains will have dif-
ferent attraction to different users under the same account. In
a similar vein, different neighbor users/items may have varied
importance when learning the properties of an item. Hence,
we further design two specialized attention mechanisms to
discriminatively select relevant information during the mes-
sage passing. Consequently, we are capable of modeling the
multifaceted interactions as well as transferring fine-grained
domain knowledge by considering the structure information.

The main contributions of this work are summarized as:

• We investigate an emerging yet challenging recommen-
dation task, namely SCSR. After pointing out the de-
fects of existing RNN-based solutions, we bring a new
take on the SCSR problem with a graph-based approach.

• We firstly construct an innovative CDS graph that ex-
plicitly links accounts and items from two domains,
and build a novel graph model named DA-GCN to at-
tentively learn expressive representations for items and
account-sharing users for recommendation.

• We conduct extensive experiments on two real-word
datasets, and the experimental results demonstrate the
superiority of DA-GCN compared with several state-of-
the-art baselines.

2 Related Work

2.1 Cross-domain Recommendation

As Cross-domain Recommendation (CR) concerns data
from multiple domains, it has been proven useful in deal-
ing with cold-start [Abel et al., 2013] and data sparsity is-
sues [Pan et al., 2010]. Existing studies can be catego-
rized into traditional methods and deep learning-based meth-
ods. In traditional methods, there are two main ways
in dealing with CR. One is to aggregate knowledge be-
tween two domains [Hu et al., 2018]. Another is to trans-
fer knowledge from the source domain to the target do-
main [Tang et al., 2012]. Deep learning-based methods are
well suited to transfer learning, as they can learn high-level
abstractions among different domains [Zhao et al., 2019;
Liu et al., 2020]. For example, Zhao et al. [2019] and Liu
et al. [2020] studied CR by leveraging the Graph Convolu-
tion Network (GCN)-based techniques, but their methods all
rely on explicit user ratings, and can not be directly applied to
SCSR. π-net [Ma et al., 2019] and PSJNet [Ren et al., 2019]

are two recently proposed methods for SCSR, but their meth-
ods are all based on RNNs, which are neither expressive
enough to capture the multiple associations nor can model
the structure information that bridges two domains.

2.2 Shared-account Recommendation

The task of recommending items for a shared-account is
to make recommendations by modeling the mixture of
user behaviours, which usually performs user identification
first, and then makes recommendations [Zhao et al., 2016;
Jiang et al., 2018]. For example, Wang et al. [2014] are the
first to study user identification in a novel perspective, in
which they employ user preference and consumption time to
indicate user’s identity. Jiang et al. [2018] introduced an un-
supervised framework to judge users within a same account
and then learned the preferences for each of them. In their
method, a heterogeneous graph is exploited to learn the re-
lationship between items and the metadata. Ma et al. [2019]

and Ren et al. [2019] argued that this task can be treated in an
end-to-end fashion, and can also be improved by simultane-
ously considering the cross-domain information.

2.3 GCN-based Recommendation

The development of the graph neural networks
[Wang et al., 2019b; Wang et al., 2019c] has attracted
a lot of attention to exploring graph-based solu-
tions for recommender systems [Guo et al., 2021;
Wang et al., 2021]. E.g., PinSage [Ying et al., 2018]

combines random walks with multiple graph convolu-
tional layers on the item-item graph for Pinterest image
recommendation. NGCF [Wang et al., 2019b] exploits
high-order proximity by propagating embeddings on the
user-item interaction graph to simultaneously update the
representations for all users and items in an efficient way by
implementing the matrix-form rule. Qiu et al. [2020] exploits
the session-based recommendation problem via proposing
a novel full graph neural network to the item dependencies
between different sessions. However, none of them can
be directly applied to SCSR as they either fail to capture
the important sequential information [Wang et al., 2020] or
focus on the recommendation problem in a single domain.

3 Methodologies

3.1 Preliminaries

Let SA = {A1, A2, . . . , Ai} and SB = {B1, B2, . . . , Bj} be
the behaviour sequences from domain A and B respectively,
where Ai ∈ A(1 ≤ i ≤ p) is the item index in domain
A; A is the item set in domain A; Bj ∈ B(1 ≤ j ≤ q) is
the item index in domain B; and B is the item set in domain
B. U =

{

U1, U2, ..., Uk, ..., U|U|
}

is a subset of accounts,

where Uk ∈ U(1 ≤ k ≤ n) denotes the account index and U
represents the whole account set. Given SA and SB , the task
of SCSR is to recommend the next item based on a user’s
historical behaviours. The recommendation probabilities for
all candidate items in domain A and B are:

P (Ai+1|SA, SB) ∼ fA(SA, SB); (1)

P (Bj+1|SB , SA) ∼ fB(SB , SA), (2)

where P (Ai+1|SA, SB) is the probability of recommend-
ing the next item Ai+1 in domain A, given SA and
SB . fA(SA, SB) is the learned function to estimate
P (Ai+1|SA, SB). Similar definitions are applied to
P (Bj+1|SB, SA) and fB(SB, SA).
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Figure 1: An overview of DA-GCN. The directed edge gi−1,i de-
notes the click of item Ai is after item Ai−1.

3.2 An Overview of DA-GCN

The key idea of DA-GCN is to learn a graph-based rec-
ommendation framework that can model the multiple asso-
ciations and the structure-aware domain knowledge via re-
cursively aggregating feature information from local graph
neighbors in different domains, so as to better capture the di-
verse user preferences in a shared-account. Fig. 1 presents
an overview of DA-GCN. Specifically, to model the sophis-
ticated associations among users and items, a Cross-Domain
Sequence (CDS) graph is first constructed. Four types of as-
sociations are considered: a) user-item interactions in domain
A; b) user-item interactions in domain B; c) sequential tran-
sitions among items in domain A; d) sequential transitions
among items in domain B. Then, we subsume H latent users
under the same account and leverage GCN to learn node rep-
resentation for each latent user, which collects information
from the connected neighbors in different domains. In our
case, as multiple users interact with different items with a
joint account, an interacted item is actually of interest to only
some specific account users. Hence, a domain-aware atten-
tion mechanism is further proposed to weight the passed mes-
sages from different domains. Analogously, we also design
another attention scheme on the item side during information
aggregation. Thereafter, we generate the sequence-level em-
bedding of each domain via concatenation and pooling opera-
tions, which facilitates prediction of the next item. Finally, to
mutually maximize the knowledge, a joint training paradigm
is leveraged.

3.3 The Proposed Method

Motivated by Wang et al. [2019a] and Zhao et al. [2019], in
this work we employ the message-passing strategy to learn
the node representations from the CDS graph.

Representation Learning with Latent Users

Since in SCSR, an account is usually shared by multiple
users, behaviors under the same account are usually generated
by different users. Moreover, as users under the same account
often have different interests, uniformly treating an account as
a virtual user is inappropriate. Because the number and iden-
tity of all users under an account are both unknown, we as-
sume there are H latent users (Uk,1, Uk,2, ...., Uk,h, ..., Uk,H )
under each account (Uk), and the embedding of user Uk,h is

denoted by eUk,h
∈ R

d, which is learned by accumulating
all the information passed from connected items in domain
A and B. Intuitively, by defining latent users under each ac-
count, we can learn diversified user representations from their
cross-domain interaction sequences to encode multifaceted
personalities and preferences.

Message Passing. Suppose Ai ∈ N
Uk,h

Ai
and Bj ∈ N

Uk,h

Bj

are the item neighbors of Uk,h in domain A and B respec-

tively, where N
Uk,h

Ai
is the item neighbor set of Uk,h in do-

main A, and N
Uk,h

Bj
is the item neighbor set in domain B.

Specifically, we define the message passed from Ai ∈ N
Uk,h

Ai

to Uk,h as:

mUk,h←Ai
= γ

Uk,h

Ai
(W1eAi

+W2(eAi
⊙ eUk,h

)), (3)

where mUk,h←Ai
is the message representation; W1,W2 ∈

R
d′×d are the trainable weight matrices. The information in-

teraction between Ai and Uk,h is represented by the element-

wise product eAi
⊙ eUk,h

, where eAi
∈ R

d and eUk,h
are

the embedding vectors of item Ai and user Uk,h respectively.

γ
Uk,h

Ai
is a learnable parameter that controls how much infor-

mation can be passed from item Ai to user Uk,h. We will
detail the learning process of this attentive weight in the sub-
sequent section.

Similar to domain A, the message passed from Bj to Uk,h

in domain B can be defined as:

mUk,h←Bj
= γ

Uk,h

Bj
(W1eBj

+W2(eBj
⊙ eUk,h

)). (4)

Besides, to retain the information carried by the target user, a
self-connection is further added to her/him via:

mUk,h←Uk,h
= γ

Uk,h

Uk,h
(W1eUk,h

), (5)

where γ
Uk,h

Bj
and γ

Uk,h

Uk,h
are attentive weights guiding the

strength of each message to be passed, which are also com-
puted by an attention mechanism.

Domain-aware Attention Mechanism. On both domains,
to fully capture each latent user’s distinct preferences over
different interacted items, we devise a domain-aware atten-
tion mechanism to compute the importance of different item
nodes to the target user. The importance of Ai to Uk,h in
domain A is defined as:

s
Uk,h

Ai
= f(eUk,h

, eAi
), (6)

where f(·) is a pairwise similarity metric. In this work, cosine
similarity is applied. Similarly, the importance of Bj to Uk,h

in domain B can be defined as:

s
Uk,h

Bj
= f(eUk,h

, eBj
). (7)



Then, the attentive weight on each item from domain A is
obtained by the following normalization operation:

γ
Uk,h

Ai
= exp(s

Uk,h

Ai
)/(

∑

Ai
′∈N

Uk,h
Ai

exp(s
Uk,h

Ai
′ )

+
∑

B′

j∈N
Uk,h

Bj

exp(s
Uk,h

Bj
′ ) + s

Uk,h

Uk,h
),

(8)

where s
Uk,h

Uk,h
weighs the self-connection within user Uk,h.

Analogously, by replacing the corresponding user/item em-

beddings, γ
Uk,h

Bj
and γ

Uk,h

Uk,h
can be obtained in a similar way.

Message Aggregation. The embedding of user Uk,h

(eUk,h
) is then updated via:

eUk,h
= LeakyReLU(mUk,h←Uk,h

+
∑

Ai∈N
Uk,h
Ai

mUk,h←Ai
+

∑

Bj∈N
Uk,h
Bj

mUk,h←Bj
), (9)

where all the messages passed from her/him-self and items
in both domains are aggregated, followed by a LeakyReLU
activation function. Eventually, we merge all latent users’
representations into the account-level representation Uk:

eUk
=

1

H

H
∑

h=1

eUk,h
. (10)

User-specific Item Representation Learning

For an item, its representation is learned by aggregating the
information from two types of nodes, i.e., the connected users
and items within the same domain. As the item representa-
tions are learned in a similar way in both domains, we take
domain A as an example, and the process is also applicable
for domain B.

Message Passing. Let Ai−1 ∈ NAi

Ai−1
and Uk,h ∈ NAi

Uk,h

be the connected item and user nodes respectively, where

NAi

Ai−1
is the item neighbor set of Ai in domain A and NAi

Uk,h

is the user neighbor set of Ai. Then, the message passed from
item Ai−1 to Ai is formulated as:

mAi←Ai−1
= γAi

Ai−1
(W1eAi−1

+W2(eAi−1
⊙eAi

)), (11)

where the parameter γAi

Ai−1
controls how much information

can be passed from Ai−1 to Ai, as we will explain shortly.
The message passed from user Uk,h to Ai is defined as:

mAi←Uk,h
= γAi

Uk,h
(W1eUk,h

+W2(eUk,h
⊙ eAi

)). (12)

Similarly, the retained message of Ai is formulated as:

mAi←Ai
= γAi

Ai
(W1eAi

), (13)

where γAi

Uk,h
and γAi

Ai
are both learnable weights.

Sequence-aware Attention Mechanism. Due to varied
relevance of linked users/items to the target item, we develop
another attention method to assess the importance of the con-
nected users and the items that have sequential relationships
to the target item. The importance of item Ai−1 to Ai is for-
mulated as:

sAi

Ai−1
= f(eAi−1

, eAi
). (14)

The importance of user Uk,h on item Ai is defined as:

sAi

Uk,h
= f(eAi

, eUk,h
). (15)

Then, we normalize sAi

Ai−1
by the following operation:

γAi

Ai−1
= exp(sAi

Ai−1
)/(

∑

A′

i−1
∈N

Ai
Ai−1

exp(sAi

Ai−1
′)

+
∑

Uk,h
′∈N

Ai
Uk,h

exp(sAi

Uk,h
′) + sAi

Ai
),

(16)

where sAi

Ai
is the importance of the self-connection within

item Ai. γ
Ai

Uk,h
and γAi

Ai
are obtained in the same way.

Message Aggregation. The user-specific item representa-
tion is updated by aggregating all messages passed from the
neighbor user/item nodes within domain A:
eAi

= LeakyReLU(mAi←Ai

+
∑

Ai−1∈N
Ai
Ai−1

mAi←Ai−1
+

∑

Uk,h∈N
Ai
Uk,h

mAi←Uk,h
),

(17)

For better expression, we use gh
Ai

= eAi
to denote the em-

bedding of item Ai w.r.t the h-th user. Then, the final repre-
sentation of item Ai (gAi

) can be defined as:

gAi
=

1

H

H
∑

h=1

gh
Ai
. (18)

Matrix-form Propagation Rule

To efficiently update the representations for all users and
items, we formulate the propagation rule in a layer-wise
matrix-form, which is defined as:

El = σ((L + I)El−1W1 + LEl−1 ⊙El−1W2), (19)

where I denotes an identity matrix; and El ∈ R
(p+n+q)×d

is the representation of all user and item nodes in domain A

and B. L ∈ R
(p+n+q)×(p+n+q) is the Laplacian matrix for

the CDS graph, which is defined as:

L =





YAiAi−1
YAiUk

0

YUkAi
0 YUkBj

0 YBjUk
YBjBj−1

,



, (20)

where YAiAi−1
∈ R

p×p and YAiUk
∈ R

p×n are the attention
matrices carrying the weights from item and user neighbors
to the target item in domain A, respectively; YUkAi

∈ R
n×p

represents the weights from item neighbors in domain A to
user nodes; YUkBj

∈ R
n×q denotes the weights from item

neighbors in domain B to the user nodes; YBjUk
∈ R

q×n and

YBjBj−1
∈ R

q×q represent the weights from user nodes and
item nodes to the target item in domain B, respectively.

The Prediction Layer

Through the max pooling operation on the item em-
beddings within the sequence (gA1

, gA2
, ..., gAi

) (or
(gB1

, gB2
, ..., gBj

)), we can get the sequence-level embed-
ding h′SA

(or h′SB
) for SA (or SB). Then, we feed the



HVIDEO HAMAZON

E-domain M-domain
#Items 3,380 67,161
#Logs 177,758 4,406,924

V-domain B-domain
#Items 16,407 126,547
#Logs 227,390 4,287,240

#Overlapped-account 13,714 13,724
#Sequences 134,349 289,160
#Training-sequences 102,182 204,477
#Validation-sequences 18,966 49,814
#Test-sequences 13,201 34,869

Table 1: Statistics of the datasets.

concatenation of h′SA
(or h′SB

) and eUk
into the following

prediction layer:

P (Ai+1|SA, SB) = softmax(WA · [h′SA
, eUk

]T + bA);

P (Bj+1|SA, SB) = softmax(WB · [h′SB
, eUk

]T + bB),

where WA, WB are the embedding matrices of all items in
domain A and B, respectively; bA, bB are the bias terms.

Then, we leverage a negative log-likelihood loss function
to train DA-GCN in each domain:

LA(θ) = −
1

|S|

∑

SA,SB∈S

∑

Ai∈SA

logP (Ai+1|SA, SB), (21)

LB(θ) = −
1

|S|

∑

SB ,SA∈S

∑

Bj∈SB

logP (Bj+1|SA, SB), (22)

where θ represents all the parameters of DA-GCN and S de-
notes the training sequences in both domain A and B. Both
objectives are joined via a multi-task training scheme:

L(θ) = LA(θ) + LB(θ). (23)

All the parameters in DA-GCN are learned via gradient back-
propagation algorithm in an end-to-end fashion.

4 Experiments

4.1 Experimental Setup

Research Questions. We intend to answer the following re-
search questions:

RQ1 How does our proposed DA-GCN method perform
compared with other state-of-the-art methods?

RQ2 Is it helpful to leverage the sequence information? Is
it helpful to learn the node representations by incorporating
the attention mechanism?

RQ3 Is it helpful to model the shared-account characteris-
tic? How does the hyper-parameter H (the number of users)
affect the performance of DA-GCN?

RQ4 How is the training efficiency and scalability of
DA-GCN when processing large-scale data?

Datasets and Evaluation Protocols. We evaluate
DA-GCN on two real-world datasets that are released by Ren
et al. [2019], i.e., HVIDEO and HAMAZON. HVIDEO is
a smart TV dataset that contains the watching logs from
two platforms, i.e., the V-domain (the videos of TV series,
movies, etc.) and E-domain (the educational videos based on

textbooks and instructional videos on sports food, medical,
etc.). HAMAZON is the data from two Amazon domains,
that is, the movie watching and rating records (M-domain)
and the book reading and rating behaviors (B-domain).

We randomly select 75% of all the sequences as the train-
ing data, 15% as the validation set and the remaining 10% as
the test set. For evaluation, we use the last watched item in
each sequence for each domain as the ground truth and report
the results measured by the commonly used metrics MRR@5,
Recall@5, MRR@20 and Recall@20. The statistics of the
two datasets are shown in Table 1.

Baselines. We compare DA-GCN with the follow-
ing baseline methods: 1) Traditional recommendations:
POP [He et al., 2017], Item-KNN [Linden et al., 2003],
and BPR-MF [Hidasi et al., 2016]. 2) Shared-account
recommendations: VUI-KNN [Wang et al., 2014]. 3) Cross-
domain recommendations: NCF-MLP++ [He et al., 2017],
and Conet [Hu et al., 2018]. 4) Sequential rec-
ommendations: GRU4REC [Hidasi et al., 2016],
HGRU4REC [Quadrana et al., 2017]. 5) Shared-
account cross-domain sequential recommendations: π-
net [Ma et al., 2019], and PSJNet [Ren et al., 2019].

Implementation Details. We implement DA-GCN us-
ing the Tensorflow framework accelerated by NVidia RTX
2080 Ti GPU. For the initialization strategy, we ran-
domly initialize the model parameters by the Xavier method
[Glorot and Bengio, 2010]. We take Adam as our optimizing
algorithm and also apply gradient clipping with range [-5,5]
during the training period. For hyperparameters, the learn-
ing rate is set to 0.001. The embedding size is set to 100 on
HVIDEO and 200 on HAMAZON. To speed up the training
process, the batch size are both set to 128. The latent user
number H is searched in [1-5] with a step size of 1. All these
parameters are tuned on the validation set.

4.2 Experimental Results (RQ1)

Table 2 shows the comparison results of DA-GCN over other
baselines on HVIDEO and HAMAZON. We have the fol-
lowing observations: 1) Our DA-GCN method achieves the
best performance on both domains of HVIDEO and outper-
forms other baselines on HAMAZON in most metrics, which
demonstrates the capability of DA-GCN in modeling the mul-
tiple associations and the user-specific representations, as
well as the structure information of the domain knowledge. 2)
The methods developed for SCSR are significantly better than
other baselines, demonstrating the importance of considering
the shared-account and cross-domain characteristics simulta-
neously. 3) DA-GCN outperforms the shared account and
cross-domain baselines (i.e., VUI-KNN, NCF-MLP++ and
Conet) indicating the importance of the sequential informa-
tion and the effectiveness of our method in modeling users’
sequential patterns. 4) From Table 2, we also observe that our
GCN-based solution performs better than RNN-based meth-
ods (π-net and PSJNet). This result demonstrates the capa-
bility of our GCN-based method in modeling the sequential
information and the complicated interaction relationships.

4.3 Ablation Studies of DA-GCN (RQ2)

To further illustrate the impact of different components to
DA-GCN, we conduct ablation studies on both datasets. Due



Methods

HVIDEO HAMAZON

E-domain (%) V-domain (%) M-domain (%) B-domain (%)

MRR Recall MRR Recall MRR Recall MRR Recall

@5 @20 @5 @20 @5 @20 @5 @20 @5 @20 @5 @20 @5 @20 @5 @20

POP 1.71 2.24 2.21 6.58 2.66 3.27 5.01 10.49 0.36 0.49 0.73 2.02 0.14 0.22 0.42 1.22
Item-KNN 2.11 2.90 3.01 12.11 4.43 2.93 10.48 23.93 1.28 1.86 2.58 9.00 3.23 4.55 6.65 20.94
BPR-MF 1.34 1.64 2.74 5.83 1.21 1.36 1.88 3.38 2.90 3.06 3.90 5.50 0.88 0.96 1.23 2.15

VUI-KNN 2.03 3.48 6.36 24.27 3.44 2.87 16.46 34.76 - - - - - - - -

NCF-MLP++ 3.92 5.14 7.36 20.81 16.25 17.90 26.10 43.04 13.68 14.21 18.44 24.31 13.67 14.05 18.14 22.08
Conet 5.01 6.21 9.26 22.71 21.25 23.28 32.94 52.72 14.64 15.12 19.25 24.46 15.85 16.28 20.98 25.56

GRU4REC 12.27 13.70 16.24 32.16 78.27 78.27 80.15 83.04 82.01 82.11 83.10 84.06 81.34 81.44 82.77 83.76
HGRU4REC 14.47 16.11 19.79 37.52 80.37 80.62 81.92 84.43 83.07 83.14 84.24 84.91 82.15 82.31 83.46 84.91

π-net 14.63 16.88 20.41 45.19 80.51 80.95 83.22 87.48 83.91 83.95 84.91 85.33 84.93 84.93 85.33 85.38
PSJNet 16.63 18.46 22.12 42.20 81.97 82.32 84.32 87.75 84.01 84.05 84.88 85.28 85.10 85.11 85.32 85.38

DA-GCN 19.24 21.24 26.65 47.78 83.13 83.42 85.46 88.30 84.69 84.71 85.13 85.34 84.81 84.81 85.32 85.38

Table 2: Experimental results on HVIDEO and HAMAZON. VUI-KNN does not work on this dataset because it needs specific time in a day
which is not available on HAMAZON dataset.

Variants

E-domain (%) V-domain (%)

MRR Recall MRR Recall

@5 @20 @5 @20 @5 @20 @5 @20

GCNOSA 19.24 20.86 26.24 43.40 82.99 83.23 85.23 87.66
GCNOA 19.11 20.81 26.07 43.78 83.09 83.35 85.43 87.88
GCNOS 19.21 21.19 26.37 47.04 83.12 83.42 85.45 88.27

DA-GCN 19.24 21.24 26.65 47.78 83.13 83.42 85.46 88.30

Table 3: Ablations studies on the HVIDEO dataset.

to space limitation, only results on HVIDEO are presented
and similar results are obtained on HAMAZON. The exper-
imental results are shown in Table 3, where GCNOS is the
method that disables the sequential information when con-
structing the CDS graph. GCNOA is the method that disables
the attention mechanisms when aggregating the passed mes-
sages. GCNOSA is a variant of DA-GCN that removes both
components. From Table 3 we can find that: 1) DA-GCN
outperforms GCNOSA and GCNOS demonstrating the impor-
tance of leveraging the sequential information in modeling
users’ preferences. 2) DA-GCN outperforms GCNOA indi-
cating the importance of weighting the passed messages dif-
ferently and our model can learn a better node representation
via the proposed attention mechanisms.

4.4 Impact of H and Model Training Efficiency

Impact of H (RQ3). To explore the importance of modeling
the shared-account characteristic, we further conduct exper-
iments on HVIDEO to show the impact of H . The experi-
mental results shown in Fig. 2 demonstrate that viewing an
account as a virtual user can not get better results than mod-
eling it as H latent users, which is more in line with reality.

Training Efficiency (RQ4). To investigate the model
training efficiency and scalability of our graph-based solu-
tion, we further conduct experiments via measuring the time

Figure 2: Impact of H and Model Training Efficiency on HVIDEO.

cost for the model training with varying the training ratio of
the HVIDEO data in [0.1, 1.0]with step size 0.1. From the ex-
perimental results shown in Fig. 2, we can find that DA-GCN
has lower training time cost than π-net and PSJNet, demon-
strating its better scalability to large scale datasets.

4.5 Conclusions

In this work, we propose DA-GCN for SCSR to fully learn
user and item representations from their interactions, as well
as the explicit structural information. Specifically, to model
the multiple associations among users and items, we first link
them in a CDS graph. To model the structure information of
the transferred knowledge, we then develop a domain-ware
GCN to learn user-specific node representations, where two
attention mechanisms are devised to weight the local neigh-
bors of the target. The experimental results on two real-world
datasets demonstrate the superiority of our graph-based solu-
tion.
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