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Abstract—With the widespread use of biometrics recognition systems, it is of paramount importance to protect the privacy of

biometrics. In this paper, we propose to protect the fingerprint privacy by the artificial fingerprint, which is generated based on three

pieces of information, i) the original minutiae positions; ii) the artificial fingerprint orientation; and iii) the artificial minutiae polarities. To

make it real-look alike and diverse, we propose to generate the artificial fingerprint orientation by a model taking both the global and

local fingerprint orientation into account. Its parameters can be easily guided by an user specific key with simple constraints. The

artificial minutiae polarities are generated from the same key, where a block based and a function based approach are proposed for the

minutiae polarities generation. These information are properly integrated to form a real-look alike artificial fingerprint. It is difficult for the

attacker to distinguish such a fingerprint from the real fingerprints. If it is stolen, the complete fingerprint minutiae feature will not be

compromised, and we can generate a different artificial fingerprint using another key. Experimental results show that the artificial

fingerprint can be recognized accurately.

Index Terms—Artificial, fingerprint, privacy protection

Ç

1 INTRODUCTION

NOWADAYS, biometrics such as fingerprint, face, iris,
and voice, are widely used in authentication systems.

In general, biometrics needs to be stored in a database for
subsequent authentication. However, templates stored in
the database are at the risk of being stolen. Once the tem-
plate is stolen, people’s identity will be compromised for-
ever. Furthermore, the stolen templates are difficult to be
replaced like passwords, which create difficulties for autho-
rized person to enter the system. Thus, biometric templates
should be stored in the database such that both the privacy
of the template and the security of the system are not com-
promised under various attacks.

Traditional encryption is not sufficient to protect the
biometrics template because decryption is required before
the biometrics matching, which exposes the original tem-
plate to the attacker. Therefore, in recent years, significant
efforts have been put in developing specific protection
techniques for biometrics, where a lot of attention has
been paid on the fingerprint. Teoh et al. [1] propose a bio-
hashing approach by projecting the user’s fingerprint fea-
ture onto an orthogonal pseudo-random matrix (i.e., the
key). The accuracy of this approach mainly depends on
the key, which is assumed to be never stolen or shared [2].

Ratha et al. [3] propose to generate cancelable fingerprint
templates by applying non-invertible transformations on
the minutiae, which requires proper fingerprint alignment.
In order to create alignment-free cancelable fingerprint
templates, Lee et al. [4] transform the minutiae based on
some changing functions guided by a rotation and transla-
tion-free value. Ferrara et al. [5] propose to protect the fin-
gerprint minutiae cylinder-code based on the fingerprint
KL projection followed by binarization. This approach can
be improved by incorporating an user specific key to per-
mutate the protected template [6]. Besides the projection
or transformation based approaches, researchers also
devote efforts in generating cryptographic keys from fin-
gerprints [7], [8], where additional chaff points (i.e., noise)
are added during the encoding process.

The above mentioned approaches inevitably destroy the
topology or structure of the fingerprint data. The corre-
sponding protected fingerprint data are noise like, it
would be quite easy for the attacker to differentiate these
data from the real fingerprint data. Ross et al. [9] indicate
that a noise like protected biometric template can cause
the attacker’s interest by suggesting the existence of secret
data. Ratha et al. [10] suggest that a secure biometric rec-
ognition system should not give the impression to the
attacker that the system is using a specific protection tech-
nique. If the attacker notices that a stolen fingerprint tem-
plate has been protected. He might be interested and put
more efforts to attack the template. Some work have
shown that, given the cancelable fingerprint template and
the corresponding transformation (i.e., the key), up to 94
percent of the original fingerprint template can be recov-
ered [11], [12], [13], [14], [15]. In [16], the authors indicate
that the key generation based approaches [7] are vulnera-
ble to key-inversion attacks.

� S. Li, X. Zhang, and Z. Qian are with the Shanghai Institute of Intelligent
Electronics and Systems, School of Computer Science, Fudan University,
Shanghai 201203, P.R. China.
E-mail: {lisheng, zhangxinpeng, zxqian}@fudan.edu.cn.

� G. Feng and Y. Ren are with the Shanghai Institute for Advanced Commu-
nication and Data Science, School of Communication and Information
Engineering, Shanghai University, Shanghai 200444, P.R. China.
E-mail: {grfeng, renyanli}@shu.edu.cn.

Manuscript received 20 Jan. 2017; revised 6 Feb. 2018; accepted 27 Feb. 2018.
Date of publication 5 Mar. 2018; date of current version 9 July 2020.
(Corresponding author: Sheng Li.)
Digital Object Identifier no. 10.1109/TDSC.2018.2812192

828 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 4, JULY/AUGUST 2020

1545-5971� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on October 15,2020 at 09:44:13 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7589-9554
https://orcid.org/0000-0002-7589-9554
https://orcid.org/0000-0002-7589-9554
https://orcid.org/0000-0002-7589-9554
https://orcid.org/0000-0002-7589-9554
https://orcid.org/0000-0001-5867-1315
https://orcid.org/0000-0001-5867-1315
https://orcid.org/0000-0001-5867-1315
https://orcid.org/0000-0001-5867-1315
https://orcid.org/0000-0001-5867-1315
https://orcid.org/0000-0003-1622-0561
https://orcid.org/0000-0003-1622-0561
https://orcid.org/0000-0003-1622-0561
https://orcid.org/0000-0003-1622-0561
https://orcid.org/0000-0003-1622-0561
https://orcid.org/0000-0001-8249-2608
https://orcid.org/0000-0001-8249-2608
https://orcid.org/0000-0001-8249-2608
https://orcid.org/0000-0001-8249-2608
https://orcid.org/0000-0001-8249-2608
https://orcid.org/0000-0003-4510-7883
https://orcid.org/0000-0003-4510-7883
https://orcid.org/0000-0003-4510-7883
https://orcid.org/0000-0003-4510-7883
https://orcid.org/0000-0003-4510-7883
mailto:
mailto:


Only a few methods are able to protect the privacy of fin-
gerprint without destroying the structure of fingerprint
data, which require a pair of fingerprints to work together
[17], [18]. Such a requirement is not practical in same appli-
cations. In addition, the protected fingerprint generated by
these schemes can not be easily replaced. Once it is stolen,
the user needs to switch the two original fingerprints or use
another pair for replacement.

In this paper, a key based artificial fingerprint generation
scheme is proposed for privacy protection. Given an original
fingerprint, we extract the minutiae positions which capture
part of the fingerprint minutiae features. An artificial finger-
print is formed based on the minutiae positions and some
artificial information generated based on an user specific
key, including the artificial fingerprint orientation (termed
as the artificial orientation for short) and the minutiae polari-
ties. To generate real-look alike artificial orientationwith suf-
ficient diversity, we propose an artificial orientation
generation model by combining a global and a local orienta-
tion model linearly. This model is controlled by a set of
parameters with simple constraints, which can be easily
guided by the key. To alleviate the variations among differ-
ent impressions of the same finger, we propose to compute
the minutiae polarities using block partition or a smooth
function. By taking the artificial orientation, the minutiae
polarities, as well as the minutiae positions into account, we
generate an artificial fingerprint both in the feature domain
and the image domain. By storing the artificial fingerprint,
the complete minutiae feature of the original fingerprint will
not be compromised when the database is stolen. The perfor-
mance of artificial fingerprint recognition is shown to be sat-
isfactory using an existing fingerprint matching algorithm.

Unlike the protected fingerprints generated using the
existing transformation (or projection) based approaches [1],
[3], [4], [5], our artificial fingerprint is real-look alike, which is
difficult to be distinguished from the real fingerprints. If it is
stolen, the attacker may be fooled and treat it as a real finger-
print. Thus, the risk of the stolen fingerprint being attacked is
reduced.Comparedwith the existing techniques that can gen-
erate protected fingerprint with similar structure to the real
fingerprint data [17], [18], our scheme does not require two
fingerprints to work together. When the artificial fingerprint
is stolen, it can be replaced easily by issuing a different key.

The rest of this paper is organized as follows. Section 2
introduces the proposed method for generating the artificial
fingerprints. Section 3 presents the experimental results.

Section 4 analyzes the irreversibility of the proposed scheme.
The transformation of minutiae positions is discussed in
Section 5, followed by the conclusions given in the last section.

2 THE PROPOSED METHOD

Fig. 1 shows the flowchart of the proposed method for gener-
ating artificial fingerprints. First, the minutiae positions of the
user’s original fingerprint are extracted and aligned. A piece
of artificial orientation is generated from an user specific key
by our proposed fingerprint orientation (termed as the orien-
tation for short) model. Then, we proposed two approaches to
generate theminutiae polarities based on the same key. Given
the minutiae positions, the minutiae polarities, and the artifi-
cial orientation, an artificial fingerprint can be generated both
in the feature domain (i.e., the artificial minutiae template)
and the image domain (i.e., the artificial fingerprint image).

2.1 Minutiae Position Extraction and Alignment

Any of the existing minutiae extraction algorithms could be
used for the minutiae position extraction. We here use the
Verifinger 6.3 software [19] to extract a set of nminutia posi-
tions from the original fingerprint F. In order to align the
minutiae positions, we detect the location and angle of the
primary core of F using the improved complex filters for
singular point detection[20], which are denoted as p ¼
ðpx; pyÞ and a, respectively.

Let’s denotemi ¼ ðxi; yiÞ, 1 � i � n, as one of the nminu-
tiae positions. The alignment is performed by translating
and rotating each minutiae position to

ðm0
iÞT ¼ Hb � ðmi � pÞT þ ðeÞT ; (1)

where ðÞT is the transpose operator, e ¼ ðex; eyÞ is the loca-
tion of the center of F, b ¼ a� p=2, and Hb is the rotation
matrix with b as the rotation angle, where

Hb ¼ cos ðbÞ; sin ðbÞ
� sin ðbÞ; cos ðbÞ

� �
: (2)

After such alignment, the primary core is overlapped with
the center of the fingerprint with the angle of p=2.

2.2 Artificial Orientation Generation

There are five major fingerprint classes in general, i.e., arch,
tented arch, right loop, left loop and whorl [21]. The pur-
pose of artificial orientation generation is to compute a cer-
tain type of orientation (corresponding to one of the five
fingerprint classes) based on a set of parameters guided by
an user specific key k, which has been paid little attention to
in literature. In [22], the authors suggest to generate the arti-
ficial orientation using a zero-pole model [23]. The orienta-
tion at point ðx; yÞ is computed as

O"ðzÞ ¼ 1

2

Xnc
i¼1

argðz� ciÞ �
Xnd
i¼1

argðz� diÞ
" #

; (3)

where z ¼ yþ jx is a complex number, argðzÞ returns the
argument of the complex number z, ci (i ¼ 1; 2; . . . ; nc) and
di (i ¼ 1; 2; . . . ; nd) refer to the locations (both are in the com-
plex domain) of the fingerprint cores and deltas (i.e., singu-
lar points), respectively. This method is able to generate the
artificial orientation by some simple constraints on the

Fig. 1. The proposed method for artificial fingerprint generation.

LI ET AL.: KEY BASED ARTIFICIAL FINGERPRINT GENERATION FOR PRIVACY PROTECTION 829

Authorized licensed use limited to: Chongqing University of Technology. Downloaded on October 15,2020 at 09:44:13 UTC from IEEE Xplore.  Restrictions apply. 



locations of singular points [23]. However, the orientation
generated for singular points with similar locations will
also be similar, which is usually not the case for real finger-
prints. To deal with this issue, a more sophisticated orienta-
tion model should be explored for artificial orientation
generation. Concretely, more parameters are needed in the
model to create the artificial orientation with more diversity.

People have proposed sophisticated models for estimat-
ing orientation from a fingerprint image [24], [25], [26],
where the parameters are usually optimized based on the
fingerprint region in the image. The distributions and con-
straints of these parameters for real fingerprints are yet to
be explored. Without such knowledge, it is difficult to ran-
domly choose a set of artificial parameters that can generate
real-look alike orientation. Thus, these models may not be
suitable for the task of artificial orientation generation. In
this section, we propose to generate the artificial orientation
by a model combining global orientation and local orienta-
tion. The global orientation keeps the basic topology of dif-
ferent fingerprint classes, which is computed directly from
the zero-pole model [23]. The local orientation describes the
orientation around the singular point area, which is com-
puted by a local orientation model guided by a few parame-
ters. With the help of the local orientation, we are able to
generate diverse artificial orientation even if the singular
points are with similar locations.

Next, we explain the local orientation model and the com-
bined orientation model in detail. Since the range of finger-
print orientation is definedwithin ½0;pÞ, there is an inevitable
discontinuity on p. As suggested in [20], [24], representing
the orientation in the complex domain would be a possible
solution for this problem. Given the orientation O, the corre-
sponding orientation in the complex domain is computed as

Z ¼ cos ð2OÞ þ j sin ð2OÞ: (4)

On the other hand, O can be computed from Z by

O ¼ 1

2
argðZÞ: (5)

In the rest of this section, the orientation in the complex
domain is termed as the complex orientation for simplicity,
and all the points are located in the complex domain.

2.2.1 The Local Orientation Model

The standard local orientation can be generated using a
point-charge model proposed in [24], where the quantity of
electricity is assumed to be the same for the real and image
part of the complex local orientation. In order to generate

diverse local orientation for a singular point s ¼ sy þ jsx,
we propose a weighted point-charge model below:

ZsðzÞ ¼
�wrReðz�sÞþjwiImðz�sÞ

v if s 2 cores

wrReðz�sÞþjwiImðz�sÞ
v if s 2 deltas;

(
(6)

where ReðzÞ and ImðzÞ refer to the real and image part of the
complex number z, wr and wi are the weights (i.e., the quan-
tity of electricity) for the real and image part of z� s, and v
is the normalization scalar

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

rRe
2ðz� sÞ þ w2

i Im
2ðz� sÞ

q
: (7)

Fig. 2 illustrates the influence vector around a core and a
delta on an unit circle for the weighted point-charge model.
With different weights applied, the influence vector is no
longer tangent to the circle (for a core) or the radial of the
circle (for a delta).

We define the area with s as the central point and �s as
the radius as the effective region for the singular point. By
taking the effective region and rotation into consideration,
the complex local orientation for s is further computed as

Zs
0ðzÞ ¼ ZsðzuÞ if dðz; sÞ � �s

0 otherwise;

�
(8)

where zu is the rotated version of point z with s as the rota-
tion center and u as the rotation angle (please refer to Eq. (1)
for computing zu), dðz; sÞ refers to the Euclidian distance
between point z and s. Fig. 3 illustrates some local orienta-
tion generated using the weighted point-charge model. It
can be seen that such a model is able to produce diverse
local orientation by choosing different wr and wi.

2.2.2 The Combined Orientation Model

We use the orientation computed from the zero-pole
model [23] as the global orientation, and denote its repre-
sentation in complex domain as Zg. We further denote the
complex local orientation for the ith singular point si as
Z0
si. The combined orientation model is obtained by

Fig. 2. Illustration of the weighted point-charge model. Left: The influ-
ence vector around a core, right: The influence vector around a delta.

Fig. 3. Local orientation generated for (a) a core and (b) a delta using the
weighed point-charge model. From left to right: wr ¼ 1 and wi ¼ 1;
wr ¼ 0:9 and wi ¼ 0:2; wr ¼ 0:2 and wi ¼ 0:9. The rotation angle u is set
as 0 for all. Both the core point and the delta point are located at the center.
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combining Zg and Z0
si linearly

ZkðzÞ ¼ GðzÞZgðzÞ þ
Pu

i¼1 SiðzÞZ0
siðzÞ

GðzÞZgðzÞ þ
Pu

i¼1 SiðzÞZ0
siðzÞ

�� �� ; (9)

where zj j computes the amplitude of the complex number z,
u is the number of singular points, G and Si are the weight
maps for the global and local orientation, respectively. G
and Si define the importance of global and local orientation
at each point. For real fingerprints, the importance of the
local orientation usually decays when the distance between
current point z and the singular point si increases, which
could be formulated as

SiðzÞ ¼ 1� dðz� siÞ
�si

� �ti
; (10)

where ti is the power measuring the slope of the decay, and
�si is the effective region for si. In order to preserve the basic
fingerprint topology, GðzÞ can not be too small. We set GðzÞ
as a constant g over thewhole fingerprint imagewith g > gt.

The advantage of such a combined orientation model is
that all the parameters have clear constraints with respec-
tive ranges. We will discuss later regarding the settings of
these ranges. As long as the artificial parameters are chosen
within the corresponding ranges, we can produce real-look
alike artificial orientation thanks to the incorporation of the
global orientation. By combining the local orientation, we
are able to generate the artificial orientation with more
diversity compared with using the global orientation only
(i.e., ti ¼ 0), as shown in Fig. 4.

In order to generate the artificial orientation, artificial
parameters need to be generated to fit the combined orienta-
tion model. We treat all the parameters as random variables
with different ranges. A pseudorandom number generator
is used to generate these variables with the seed being the
user specific key k. In the following discussions, all the ran-
domly generated parameters (or numbers) refer to such
pseudorandom numbers. Given an user specific key k, the
major steps of the artificial orientation generation are sum-
marized as follows.

(1) Generate a random number t (within the range of
½0; 1�) to determine the type of the artificial orienta-
tion according to the categorical distribution (i.e.,
prior possibilities) of the five major fingerprint

classes [21]. As pointed out in [27], there should be
one core and one delta for tented arch, left loop and
right loop, and two cores and two deltas for whorl
(i.e., u ¼ 2 for tented arch, left loop and right loop,
and u ¼ 4 for whorl).

(2) Determine the locations of the singular points using
the random singularities generation approach pro-
posed in [28], the parameters of which are randomly
generated.

(3) Compute the complex artificial orientation Zk based
on the combined orientation model given in Eq. (9),
where all the rest parameters are randomly gener-
ated (including wr, wi, u, �s, ti, and g). The artificial
orientation Ok can be computed directly from Zk

using Eq. (5).
Sometimes, the type of the artificial orientation might be

determined as arch,whichdoes not contain any singular point
(i.e., u ¼ 0). In such a case, the combined orientation model
does notwork.We adopt the arch orientationmodel proposed
in [22], where the orientation at point z is computed by

OkðzÞ ¼ arctan � cos
ImðzÞp

M

� �� �
; (11)

whereM is the width of the fingerprint, and � is the parame-
ter controlling the curvature of the arch, the range of which
is empirically set within ½0:3; 3�. Thus, only one parameter is
used for generating the artificial orientation of arch. We
believe it is not a big issue since only 3.7 percent of the real
fingerprints are arch [21]. Fig. 5 illustrates examples for
each of the five types of artificial orientation generated.

2.3 Minutiae Polarity Generation

Given the artificial orientation Ok, the artificial direction of
each aligned minutiae positionm0

i can be computed as

u0ik ¼ Okðx0
i; y

0
iÞ þ rikp; (12)

where rik is an integer that is either 0 or 1. With the con-
straint of the artificial orientation, this scheme is able to
make the topology and range (from 0 to 2p) of artificial
minutiae directions close to those from real fingerprints. We
term rik as the minutiae polarity of m0

i. How to determine

Fig. 4. Artificial orientation generated before and after the orient combi-
nation. From left to right: The global orientation; the local orientation for
a core (top) and a delta (bottom); the combined orientation.

Fig. 5. Artificial orientation generated for (a) arch, (b) tented arch, (c) left
loop, (d) right loop, and (e) whorl.
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the value of rik is an important issue here. First of all, rik
should be determined by k only, which does not expose any
information of the original fingerprint. Second, rik has to be
tolerable against the variations among different impressions
of the same finger. In this section, we propose two
approaches for generating the minutiae polarities.

2.3.1 Block Based Minutiae Polarity

We partition the fingerprint image into a set of non-overlap-
ping blocks with fixed size d� d, each block is assigned with
a random integer of value 0 or 1. The minutiae polarity is
computed as the value of the block which accommodates
the corresponding minutiae position, i.e.,

rik ¼ Blk
xi

0

d

	 

;

yi
0

d

	 
� �
; (13)

where Blkða; bÞ refers to the value of the block with the two
dimensional index ða; bÞ and �b c is the floor operation which
gets the largest integer less than or equal to �.

2.3.2 Function Based Minutiae Polarity

In this approach, we propose to construct a function Gk for
computing the minutiae polarities, where

rik ¼ VðGkðxi
0; yi0ÞÞ; (14)

where VðaÞ is an indicator function

VðaÞ ¼ 1 if a � 0
0 if a < 0:

�
(15)

To alleviate the variations among different impressions of
the same finger, Gk has to be locally smooth. We mix a set of
h Gaussian kernels to form Gk, i.e.,

GkðxÞ ¼
Xh
i¼1

hiNðxjmmi;LLiÞ; (16)

where x is a two dimensional vector, Nðxjmmi;LLiÞ is the ith
Gaussian kernel with mmi as the center and LLi as the covari-
ance matrix, and hi is the weight for the ith Gaussian kernel.

Similar to the generation of artificial orientation, different
parameters (i.e., mmi, hi and LLi) need to be generated to com-
pute each kernel, where the parameter ranges should be
determined. We set the center mmi (a two dimensional vector)
to be located within the fingerprint image, and the range of
the weight hi as ½�1; 1�. In order to make the covariance
matrix LLi invertible, we set LLi as a diagonal matrix, the ele-
ments of which are within the range of ½L=3; 2L=3�with

L ¼ minðM;NÞ; (17)

where M and N are the width and height of the fingerprint
image, andminðM;NÞ returns theminimumofM andN. With
the ranges determined, these parameters can be randomly
generated based on k, and rik can be computed accordingly.

2.4 Artificial Fingerprint Generation

We obtain the artificial minutiae template Mk by integrating
the aligned minutiae positions and the artificial minutiae
directions

Mk ¼ fðm0
i; u

0
ikÞ; 1 � i � ng: (18)

Sometimes, a global translation is necessary to be applied on
Mk such that all the minutiae points are located inside the
fingerprint image. In Mk, the minutiae positions are
extracted from the original fingerprint, while the minutiae
directions are computed with the constraint of the artificial
orientation that follows the topology of real fingerprints.
Therefore, Mk has a similar topology to the minutiae
extracted from the real fingerprints.

Next, we adopt the amplitude and frequency modulated
(AM-FM) fingerprint model [29] for generating artificial fin-
gerprint images. The AM-FM fingerprint model is initially
proposed by Lakin and Fletcher [29], which is very useful in
fingerprint reconstruction [30], [31]. Given the original fin-
gerprint image F , the AM-FM fingerprint model represents
the intensity of each pixel ðx; yÞ as

F ðx; yÞ ¼ Aðx; yÞ þBðx; yÞ � cos ½cðx; yÞ� þNðx; yÞ; (19)

where Aðx; yÞ is the offset, Bðx; yÞ is the amplitude, cðx; yÞ is
the hologram phase, and Nðx; yÞ refers to the noise. The
hologram phase c determines the ridges and minutiae of
the fingerprint, and cosðcÞ refers to the fingerprint image
without noise. It can be decomposed as

cðx; yÞ ¼ ccðx; yÞ þ csðx; yÞ; (20)

where cc is the continuous phase and cs is the spiral phase.
The continuous phase mainly depends on the orientation
and ridge frequency of F . The spiral phase can be calculated
by the nminutiae positionsmi of F

csðx; yÞ ¼
Xn
i¼1

pi arctan
y� yi
x� xi

� �
; (21)

where pi 2 f�1; 1g is the bipolar polarity ofmi.
Given the aligned minutiae positionsm0

i, the artificial ori-
entation Ok, and the minutiae polarities rik, the artificial fin-
gerprint image Fk can be generated by combining its
continuous phase cck and spiral phase csk as shown in
Fig. 6. In order to generate cck, we randomly choose a fixed
fingerprint ridge frequency fk based on k. The range of fk is
within ½1=6; 1=9�, which covers the typical range of ridgeline
frequency in 500-dpi fingerprint images [32]. Based on Ok

and fk, cck can be generated using the continuous phase
reconstruction method proposed in [31]. In order to obtain
csk, we transform rik into the bipolar polarity by

pik ¼ �1 if rik ¼ 0
1 if rik ¼ 1:

�
(22)

Based on the minutiae positions m0
i and the corresponding

bipolar polarities pik, csk can be computed using Eq. (21).
The artificial fingerprint image is then computed by

Fk ¼ cosðcck þ cskÞ: (23)

Finally, a noising and rendering step [22] is applied on Fk to
make it real-look alike (see Fig. 6).

3 EXPERIMENTAL RESULTS

3.1 Parameter Range Settings for Artificial
Orientation

In our combined orientation model (see Eq. (9)), there are
five types of parameters except the locations of the singular
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points, including the weights wr and wi, the rotation angle u,
the radius of the effective region �s, the slope of the local ori-
entation decay ti, and the importance of the global orienta-
tion g. Proper ranges should be defined for these
parameters to generate real-look alike artificial orientation
with sufficient diversity. Next, we explain in detail regard-
ing how to set these ranges.

The weights wr and wi determine the shape of the local
orientation. According to Eqs. (5) and (6), the local orienta-
tion depends on the ratio between wr and wi. Therefore, we
set wr 2 ð0; 1� and wi 2 ð0; 1�, which covers all the possible
ratios (except zero) to produce local orientation with suffi-
cient diversity. The rotation angle u reflects the rotation of
the singular point, we set u 2 ½�p=6;p=6�, which is in accor-
dance of normal fingerprint rotations. For each of the rest
three types of parameters, we set it to different values and
compute the difference between the combined orientation
Ok (with other parameters fixed) and the corresponding
global orientation Og, the results of which are shown in
Fig. 7. For the radius of the effective region, regardless the
type of the singular point, we set �s 2 ½L=3; 2L=3�, which
produces the rapid changes of Ok when compared with Og.

For ti or g, we observe that it can hardly produce more
diversity (in Ok) of value more than 2, with less than 0.5
degrees of additional difference between Ok and Og. In our
implementation, we set ti 2 ½0; 2� and g 2 ½0:3; 2� (thus
gt ¼ 0:3). The reason we choose a relatively high lower
bound for g (i.e., gt ¼ 0:3) is to make sure that the basic fin-
gerprint topology is preserved. It should be noted that there
is no harm to moderately increase the upper bound of these
parameters as the basic fingerprint topology is preserved
thanks to the incorporation of global orientation.

3.2 Accuracy

We evaluate the accuracy of artificial fingerprint recognition
based on the first 3 impressions of the FVC2002 DB2_A
database, which contains 300 fingerprints from 100 fingers
(with 3 impressions per finger). The VeriFinger 6.3 [19] is
used for the minutiae positions extraction and fingerprint
matching. We do not use all the 8 impressions of the
FVC2002 DB2_A database, the reason is that we find other
impressions (4 to 8) may contain partial fingerprints with-
out any core points. While our proposed method does not
work for such fingerprints.

We assign each finger with an user specific key k and
generate the artificial fingerprint in the feature domain (i.e.,
the artificial minutiae template) and the image domain (i.e.,
the artificial fingerprint image). For each finger, the artificial
fingerprint generated from the first impression is served as
the gallery, while those generated from the other 2 impres-
sions are served as the probes. We match each of the probes
against the corresponding gallery, producing 2 genuine
matches. Thus, we have 200 genuine matches for all the 100
fingers. The above process is repeated 10 times, each time
we assign a different key for each finger. Therefore, we
have 2,000 genuine matches for the 100 fingers. The 100 gal-
lery artificial fingerprints generated from the first of the 10
repeated process are used to compute the decision thresh-
olds. Each of the gallery is matched against the rest 99 gal-
leries, which produces 100� 99=2 ¼ 4950 imposter matches
(the repeated ones are removed).

Table 1 shows the accuracy (i.e., false rejection rate) of the
artificial fingerprint recognition with different block size d

or different number of Gaussian kernels h, where the artifi-
cial fingerprint images are generated without the noising

Fig. 6. Artificial fingerprint image generation based on the AM-FM finger-
print model.

Fig. 7. The average difference (in degrees) between Ok and Og with different settings of (a) �s, (b) ti, and (c) g. The size of the orientation is with the
height of 560 and width of 296 (i.e., L ¼ 296), which is the same as the size of the images in the FVC2002 DB2_A database.
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and rendering. FAR0:1 and FAR0 refer to the case when the
false acceptance rate (FAR) is 0.1 percent and 0, and EER
means the equal error rate. For simplicity, we term the artifi-
cial fingerprints generated with block based minutiae polar-
ity and function based minutiae polarity as block based and
function based artificial fingerprints, respectively. Fig. 8 fur-
ther gives the distributions of the genuine and imposter
matching scores for these two types of artificial fingerprints
with d ¼ 64 and h ¼ 64. The scores are well separated espe-
cially for the artificial minutiae templates.

It can be seen fromTable 1 that the function based artificial
fingerprints have a similar performance when compared
with the block based ones in the feature domain, but they per-
form better in the image domain. For block based artificial
fingerprints, larger d achieves higher accuracy. The block
with the size 64 (i.e., d ¼ 64) performs the best, with false
rejection rate (FRR) of 1.45 percent (at FAR0) in the feature
domain and FRR of 6.00 percent (at FAR0) in the image
domain. The reason is that larger d provides larger blocks,
which is more robust for the variations among different
impressions of the same finger. For function based artificial
fingerprints, the accuracy does not vary much with different
h. The number of kernels of 16 (i.e., h ¼ 16) performs the best,
with FRR of 1.50 percent (at FAR0) in the feature domain and
FRR of 6.00 percent (at FAR0) in the image domain. The

recognition accuracy in the image domain is consistently
lower compared with that in the feature domain. This is due
to the imperfection of artificial fingerprint image generation,
where a few spurious minutiae points might be produced. In
the following discussions, we only use the artificial minutiae
templates for evaluation unless otherwise stated.

3.3 Attacks

In case the user specific key is stolen, unauthorized people
may try to enter the system using the stolen key and his
own fingerprint. Let’s assume all the 100 fingers share the
same key. The first impression of each finger is used to gen-
erate a gallery. Each gallery is matched against the other 99
galleries, producing 100� 99=2 ¼ 4950 imposter matches.
The successful attack rates of these imposter matches are
given in Table 2, where the decision thresholds are the same
as that computed in the previous section. In addition, we
show in Fig. 9 the distributions of the imposter matching
scores with the same and different keys, where a significant
portion of the distributions is overlapped.

We can see fromTable 2 that it ismore difficult to attack the
block based artificial fingerprints than the function based ones
using the stolen key. The successful attack rate for the block
based artificial fingerprints is less than 2.00 percent at FAR0:1

(when d ¼ 16 or 32), while the corresponding successful
attack rate for the function based ones is around 8.00 percent.

TABLE 1
The Accuracy of Artificial Fingerprint Recognition (Values in Percentage)

Block based artificial fingerprint Function based artificial fingerprint

minutiae template fingerprint image minutiae template fingerprint image

EER FAR0:1 FAR0 EER FAR0:1 FAR0 EER FAR0:1 FAR0 EER FAR0:1 FAR0

d ¼ 16, h ¼ 16 0.86 1.35 3.25 1.18 7.15 14.05 0.66 0.80 1.50 0.51 2.95 6.00
d ¼ 32, h ¼ 32 0.61 0.75 2.30 1.51 4.05 9.50 0.61 1.00 2.15 1.10 2.55 6.00
d ¼ 64, h ¼ 64 0.41 0.50 1.45 1.01 3.95 6.00 0.48 1.00 2.45 0.73 2.85 6.00

Fig. 8. The distributions of the genuine and imposter matching scores for
(a) block based artificial minutiae templates, (b) function based artificial
minutiae templates, (c) block based artificial fingerprint images, and (d)
function based artificial fingerprint images. Both d and h are set as 64.

TABLE 2
Successful Attack Rates Using the Stolen Key Against the

Artificial Fingerprint (Values in Percentage)

block based function based

FAR0:1 FAR0 FAR0:1 FAR0

d ¼ 16, h ¼ 16 1.39 0.00 6.79 0.14
d ¼ 32, h ¼ 32 1.66 0.00 7.97 0.18
d ¼ 64, h ¼ 64 4.82 0.00 5.01 0.12

Fig. 9. The distributions of the imposter matching scores using the same
and different keys for (a) block based artificial fingerprints, and (b) func-
tion based artificial fingerprints. Both d and h are set as 64.
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Overall, the successful attack rate is low even if the key is
shared among all the fingers. It would be difficult for unau-
thorized people to enter the system using a stolen key.

3.4 Fingerprint Replacement

Once the user specific key is stolen, we can reissue the user a
different key and generate a different artificial fingerprint,
as shown in Fig. 10. In this section, we evaluate the differ-
ence among different artificial fingerprints generated based
on the same fingerprint with different keys. We randomly
choose 10 out of the 100 fingers. For each finger, we generate
100 artificial fingerprints based on the first impression using
100 different keys, each of the 100 artificial fingerprints is
matched against the other 99, so we have 100� 99=2 ¼ 4950
matches. In total, we conduct 4950� 10 ¼ 49500 matches
for the 10 fingers chosen. In order to show the effectiveness
of the proposed artificial orientation generation scheme, we
generate the following three different versions of artificial
fingerprints:

(1) Version A: the artificial fingerprints generated based
on the proposed artificial orientation generation
scheme;

(2) Version B: the artificial fingerprints generated based
on the global orientation model (i.e., the zero-pole
model) only;

(3) Version C: the artificial fingerprints generated based
on the real orientation extracted from another finger-
print database (FVC2002 DB1_A).

The successful match rates of these three versions of artifi-
cial fingerprints are listed in Table 3, where both d and h are
set as 64. It can be seen that the artificial fingerprints with
Version A have lower successful match rate when com-
pared with the Version B ones (over 5 percent lower at
FAR0:1 for function based artificial fingerprints), while those
with Version C perform the best. This means our proposed
artificial orientation generation scheme achieves better

diversity when compared with using the global orientation
model only. The function based artificial fingerprints per-
form significantly better than the block based ones, with
over 20 percent lower successful match rate at FAR0:1.

3.5 Fingerprintness

We then quantitatively evaluate how real-look alike it is of the
artificial fingerprint. The evaluation is based on the measure
of fingerprintness which is initially proposed in [33] for dif-
ferentiating fingerprint images from non-fingerprint images
or altered fingerprint images. This scheme estimates the
image fingerprintness using a support vector machine (SVM)
classifier based on the gray-level co-occurrence matrix
(GLCM) features extracted from the orientation difference
map (i.e., the difference between the image orientation and
themodeled orientation). The fingerprintness is defined from
0 to 1, higher fingerprintness means more likely the image is
a fingerprint image. First of all, we construct a database with
800 non-fingerprint images and 800 real fingerprint images.
The non-fingerprint images are collected from the ImageNet
database [34], where 100 object classes are randomly selected
with 8 images per class (all converted to grayscale). The real
fingerprint images are chosen from the FVC2002 DB2_A
database. We select 400 non-fingerprint images and 400 real
fingerprint images to train an SVM classifier with radial basis
function. The rest of the images serve as the test images,
where the rate of detecting a non-fingerprint image as a real
fingerprint image is 1.25 percent, and the rate of detecting a
real fingerprint image as a non-fingerprint image is 5 percent.
By using the SVM classifier, we measure the fingerprintness
of 1,000 gallery artificial fingerprint images generated in
Section 3.2 (with the noising and rendering applied). The
average fingerprintness of these images is 0.94 with
4.6 percent of them detected as non-fingerprint images. This
indicates that our artificial fingerprint images are difficult to
be differentiated from the real fingerprint images.

However, for evaluating the fingerprintness of the finger-
print in the feature domain (i.e., the minutiae template in
our case), the approach in [33] can not be directly applied
because there is no image available to compute the image
orientation. To deal with this issue, we estimate the image
orientation from the minutiae templates using an existing
orientation reconstruction scheme [30]. With the orientation
estimated and the orientation difference map computed, the
fingerprintness of a minutiae template can be measured
using the SVM classifier trained before. Two sets of minu-
tiae templates are incorporated in this test, including 400
original minutiae templates and 1,000 artificial minutiae
templates. The original minutiae templates are extracted
from the 400 real fingerprint images for testing, and the
other set is obtained from the gallery templates generated in

Fig. 10. The original fingerprint (the first column) and the corresponding
artificial fingerprints (the second to the fourth columns) generated using
different keys. Top: The original and the artificial minutiae templates;
Bottom: The original and the artificial fingerprint images. The blue circles
refer to the original minutiae positions, and all the images are made
transparent for illustration purpose.

TABLE 3
Successful Match Rates Among the Replaced
Artificial Fingerprints (Values in Percentage)

block based function based

FAR0:1 FAR0 FAR0:1 FAR0

Version A 43.04 27.93 20.69 9.14
Version B 46.78 32.80 25.52 12.05
Version C 39.82 26.51 19.27 8.28
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Section 3.2. Table 4 gives the detection results and average
fingerprintness of these two sets of minutiae templates,
where the detection rate refers to the percentage detected as
non-fingerprints. The artificial minutiae templates perform
similarly to the original minutiae templates, less than 6 per-
cent of which are detected as non-fingerprints with average
fingerprintness of 0.93. Thus, it is also difficult to differenti-
ate the artificial minutiae templates from the real minutiae
templates. In other words, the protection of fingerprint is
well concealed in the artificial fingerprints.

3.6 Comparisons

We first compare our proposed scheme with the existing
fingerprint privacy protection techniques which are able to
preserve the topology of the fingerprint [17], [18]. Note
these existing schemes require two original fingerprints to
work together, which are not able to perform the fingerprint
replacement. We term the protected fingerprints generated
using the method in [17], [18] as the mixed fingerprint and
the combined fingerprint, respectively. For fair comparison,
we generate 1,000 gallery mixed/combined fingerprints in
the image domain from the first impressions in the
FVC2002 DB2_A database, and 2,000 probe mixed/com-
bined fingerprints from the corresponding second and third
impressions. Both the mixed fingerprint image and the com-
bined fingerprint image are generated based on the strate-
gies that are able to provide the best accuracy, and the
VeriFinger 6.3 [19] is served as the matcher for evaluation.
The comparison results are reported in Table 5, where the
results of our scheme (in the image domain) are duplicated
from previous sections. It can be seen that, compared with
the work in [17], [18], our scheme performs significantly bet-
ter in terms of accuracy and maintains higher fingerprint-
ness. In addition, we can generate difference artificial
fingerprints for the same fingerprint with different keys.

Next, we compare the accuracy of the proposed scheme
with other fingerprint privacy protection algorithms [5], [6],
[7], [8], [35], [36] which are not able to preserve the topology
of the fingerprint. For fair comparison,we adopt two common
protocols (the 1vs1 and the standard FVC protocol [5], [8])
and evaluate our scheme onfive different databases including
FVC2002 DB1_A, FVC2002 DB2_A, FVC2002 DB3_A,
FVC2002 DB4_A and FVC2006 DB2_A. Each of the FVC2002
databases contains 800 fingerprint images from 100 fingers
with 8 impressions per finger. The FVC2006 DB2_A database
contains 1,680 fingerprint images from 140 fingers with 12
impressions per finger. In the 1vs1 protocol, the first impres-
sion of each finger is matched against the corresponding sec-
ond impression to compute the FRR, which is then matched
against the first impressions of the other fingers to compute
the FAR. In the standard FVC protocol, each impression of

each finger is matched against the other impressions of the
same finger to compute the FRR, while the computation of
the FAR is the same as that of the 1vs1 protocol.

For the four FVC2002 databases, only the 1vs1 protocol is
conducted because some of the impressions (except the first
two impressions) are partial without any core points. There
are 100� 1 ¼ 100 genuine matches to compute the FRR and
100� 99=2 ¼ 4950 imposter matches to compute the FAR.
For the FVC2006 database, both the two protocols are con-
ducted as this database contains no partial fingerprint
images. There are 140� 1 ¼ 140 and ð12� 11=2Þ � 140 ¼ 9240

genuine matches to compute the FRR for the 1vs1 protocol
and the standard FVC protocol, respectively. The number of
imposter matches is 140� 139=2 ¼ 9730 for both protocols.

Table 6 shows the accuracy of various fingerprint privacy
protection techniques using the 1vs1 protocol, where the
results of our scheme is evaluated on the feature domain.
The “same key” means that all the artificial fingerprints are
generate using the same key, which is to evaluate the effect
of the user specific key on the accuracy. It can be see that
using the same key slightly reduces the accuracy of the pro-
posed scheme. Compared with the most recent work [8],
our scheme (block based) performs the same or better in all
the databases except in FVC2002 DB1_A. Compared with
the work in [5], our scheme performs better in FVC2002
DB2_A, FVC2002 DB3_A and FVC2002 DB4_A. The com-
parisons among different techniques using the standard
FVC protocol on the FVC2006 database is given in Table 7.
Our scheme (block based) performs better than all the other
schemes except the work in [5] and [6]. It should be noted
that both the work in [5] and [6] adopt FVC2006 DB2_B for
training to compute the protected template, which leads to
the best accuracy among all the techniques on the FVC2006
database using both protocols.

On the other hand, the work in [6] randomly permutates
the P_MCC template obtained from the work in [5] using an
user specific key. The accuracy of the “same key” case for
[6] should be similar to the accuracy of the work in [5] (see
Table 7). From Table 6, we can see that the proposed scheme
(block based and “same key”) performs better than the work
in [5] on the FVC2002 DB2_A, FVC2002 DB3_A and
FVC2002 DB4_A using the 1vs1 protocol. This indicates
that, in the “same key” case, the proposed scheme (block
based) should also perform better than the work in [6] on
these databases using the 1vs1 protocol.

4 IRREVERSIBILITY

We analyze the irreversibility of the artificial fingerprint in
terms of the possibility to recover the original fingerprint

TABLE 4
The Detection Rates (Dr) and Average

Fingerprintness (Ai) Between the Original Minutiae
Template and the Artificial Minutiae Template

Minutiae
templates

Original Artificial

Dr (%) 6.75 5.20
Ai 0.91 0.93

TABLE 5
Comparisons Among Different Privacy Protection Techniques

with the Ability to Preserve the Fingerprint Topology

Schemes Proposed
block based
(d ¼ 64)

Proposed
function based

(h ¼ 64)

Ross et al.
[17]

Li et al.
[18]

Accuracy
(at FAR0)

6.00% 6.00% 16.70% 18.50%

Fingerprintness 0.94 (with various
settings of d and h)

0.81 0.90
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(minutiae) from the artificial fingerprint. Let’s assume the
attacker already knows this is an artificial fingerprint as
well as the corresponding generation process (i.e., the key).
In order to recover the fingerprint minutiae, he needs to
guess the minutiae direction of each minutiae point. Next,
we discuss the possibility to recover the original fingerprint
(from the artificial fingerprint) in terms of full-leakage irre-
versibility and authorized-leakage irreversibility [37].

4.1 Full-Leakage Irreversibility

Full-leakage irreversibility refers to the difficulty (possibil-
ity) to exactly recover the original fingerprint from the pro-
tected fingerprint (i.e., the artificial fingerprint in our case).
In [38], the authors indicate that the minutiae directions can

be estimated based on the ground truth orientation of differ-
ent fingerprint classes. Once the ground truth orientation
(within ½0;pÞ) is established, the direction of each minutiae
point (within ½0; 2pÞ) could be randomly selected from one
of the two directions corresponding to the orientation of the
minutiae point (i.e., O or Oþ p). Such a direction selection
procedure may not be the best strategy for the recovery. The
reason is that the minutiae have the tendency to form clus-
ters, and neighboring minutiae points tend to have similar
directions of either O or Oþ p [39]. Therefore, to conduct
the recovery, the attacker could estimate the ground truth
orientation and cluster the minutiae positions. Then, the
recovery can be performed cluster by cluster based on the
similarity among the neighboring minutiae directions.

The establishment of the ground truth orientation
requires the following two pieces of information: i) the orig-
inal fingerprint class, and ii) the location of the primary core
of the original fingerprint. Let’s denote the probability to
correctly guess the original fingerprint class as �o, which can
be estimated based on the prior probabilities of the five
major fingerprint classes mentioned before [21], i.e., 0.037
for arch, 0.029 for tented arch, 0.317 for right loop, 0.338 for
left loop, and 0.279 for whorl. During the artificial finger-
print generation, the primary core of the original fingerprint
is initially translated to the center due to the minutiae posi-
tion alignment (see Section 2.1), which might be further
translated because of the global translation (see Section 2.4).
Therefore, the primary core should be located around the
image center. Assume it is located at the center, the proba-
bility to establish the ground truth orientation is roughly �o
for a certain fingerprint class.

As suggested in [39], the distribution of theminutiae posi-
tions can be estimated using the Gaussian mixture model
(GMM), where one component represents the distribution of
the minutiae positions from one cluster, and the clusters are
independently distributed. Thus, the attacker can cluster the
minutiae positions based on the GMM and form a set of C
clusters. For the cth cluster, let’s denote the number of the
minutiae positions and those with original directions of O as

TABLE 6
Comparisons of the Accuracy of the Proposed Scheme and Other Privacy Protection Techniques

which are Not Able to Preserve the Fingerprint Topology Using the 1vs1 Protocol (Percentage Values)

Schemes FVC2002 DB1_A FVC2002 DB2_A FVC2002 DB3_A FVC2002 DB4_A FVC2006 DB2_A

EER FAR0:1 FAR0 EER FAR0:1 FAR0 EER FAR0:1 FAR0 EER FAR0:1 FAR0 EER FAR0:1 FAR0

Nandakumar et al. [7] - - 14.00 - - - - - - - - - - -
Yang et al. [35] 3.38 - - 0.59 - - 9.80 - 16.52 - - - - -
Yang et al. [36] - - 4.00 1.02 - 2.00 8.63 - - - - - 4.83 - -
Li et al. [8] 0.83 - 2.00 0.00 - 0.00 4.77 - - 10.05 - - 2.74 - 16.43

Ferrara et al. [5] 0.00 0.00 0.00 0.37 1.00 2.00 4.94 9.00 12.00 7.00 19.00 24.00 0.69 2.86 2.86
P_MCC64

1

Proposed block based 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 5.00 6.01 17.00 21.00 2.38 4.29 5.71
d ¼ 64

Proposed block based 1.00 1.00 1.00 0.00 0.00 0.00 1.15 2.00 5.00 6.05 18.00 22.00 3.49 5.71 7.08
d ¼ 64 (same key)

Proposed function based 0.47 1.00 2.00 0.00 0.00 0.00 3.01 7.00 12.00 6.14 23.00 27.00 3.20 8.57 9.29
h ¼ 64

Proposed function based 1.00 1.00 2.00 0.00 0.00 0.00 3.30 11.00 15.00 6.52 24.00 30.00 3.50 9.29 10.00
h ¼ 64 (same key)

1 The recommended configuration as indicated in [5].

TABLE 7
Comparisons of the Accuracy of the Proposed Scheme and
Other Privacy Protection TechniquesWhich Are Not Able to
Preserve the Fingerprint Topology Using the Standard FVC

Protocol on the FVC2006 DB2_aDatabase (Percentage Values)

Schemes EER FAR0:1 FAR0

Yang et al. [36] 3.07 - -
Li et al. [8] 1.59 - 5.78

Ferrara et al. [5] 0.32 0.47 1.07
P_MCC64

1

Ferrara et al. [6] 0.10 0.10 0.20
2P_MCC64;64

Ferrara et al. [6] 0.30 0.50 1.00
2P_MCC64;64 (same key)

Proposed block based 1.38 2.43 3.47
d ¼ 64

Proposed block based 1.96 2.84 5.17
d ¼ 64 (same key)

Proposed function based 1.67 3.73 5.25
h ¼ 64

Proposed function based 2.12 4.22 5.84
h ¼ 64 (same key)

1 The recommended configuration as indicated in [5].
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nc and oc, respectively. If all the original directions are simi-
lar, oc should be equal to 0 or nc. When oc ¼ i (i 2 ½0; nc�), the
probability for the attacker to perform the full recovery is

Pi
c ¼

P ðoc ¼ iÞ
nc
i

� � ; (24)

where P ðoc ¼ iÞ refers to the prior probability of a cluster
with oc ¼ i. The value of P ðoc ¼ iÞ can be roughly estimated
based on a set of clusters extracted from the original finger-
prints of the same database. Since the events of a cluster
with oc ¼ i are mutually disjoint with prior probability of
P ðoc ¼ iÞ, the probability to fully recover the cth cluster
(with any possible value of oc) is estimated as

Pc ¼
Xnc
i¼0

P ðoc ¼ iÞ � Pi
c: (25)

By considering all the C clusters, the probability to fully
recover the original minutiae (of a certain fingerprint class)
is given by

Prf ¼ �o �
YC
c¼1

Pc: (26)

Next, we empirically assess the full-leakage irreversibil-
ity using the 100 gallery artificial fingerprints generated in
Section 3.2. We randomly split these fingerprints into two
parts, each of which contains 50 fingerprints. One part (say
Part I) is used to roughly estimate P ðoc ¼ iÞ. Since nc varies
among different clusters, we compute P ðoc ¼ iÞ based on
the frequency in the ith bin of the histogram of oc=nc. The
other part (say Part II) is used to estimate Prf given
P ðoc ¼ iÞ. For each fingerprint, we vary the value of C from
1 to 6 to fit a set of 6 GMMs using the Expectation Maximi-
zation algorithm [40], where the Akaike Information Crite-
rion [41] is adopted for the model selection (i.e., selecting
the optimal C). The difficulty to fully recover each of the
original fingerprints in Part II is computed as log2Prf bits
with an average of 27.6 bits, where the average number of
minutiae points is n ¼ 45:82. This is around 18 bits lower
than using the strategy of choosing one of the two directions
independently for each minutiae position (the difficulty is
roughly n ¼ 45:82 bits in such a case).

We would like to point out that knowing the key does not
provide any advantage for the recovery. Since the artificial
orientation and minutiae polarities (which determine the
artificial minutiae directions) are generated purely based on
the key, there is no relationship between the original minu-
tiae directions and the artificial fingerprint (or the key). This
is to say, the information of the original minutiae directions
is completely discarded in the artificial fingerprint.

4.2 Authorized-Leakage Irreversibility

Authorized-leakage irreversibility means the difficulty (pos-
sibility) to recover a fingerprint that would “match” the
unprotected fingerprint in a traditional fingerprint recogni-
tion system [37]. In the following discussions, we term such
recovery as the authorized-leakage recovery. We assume the
attacker has correctly guessed the original fingerprint class
with the possibility �o. Given an artificial fingerprint and the
corresponding ground truth orientation of the original fin-
gerprint class, the task of the authorized-leakage recovery

becomes to find a set of minutiae polarities and generate a
recovered fingerprint that would “match” the unprotected
fingerprint.

We empirically assess the difficulty of the authorized-
leakage recovery using the first two impressions in the
FVC2002 DB2_A database. Given a stolen artificial finger-
print generated from one of the first impressions, we
recover 100 fingerprints based on the aligned minutiae posi-
tions, the ground truth orientation, and a set of minutiae
polarities of 0 or 1. For the minutiae positions belonging to
the same cluster (please refer to Section 4.1 for the cluster-
ing), we randomly select i minutiae positions and assign
their polarities with 0 (corresponding to the directions that
are recovered as O) with probability of P ðoc ¼ iÞ, while the
polarities of the rest are assigned with 1. Each recovered fin-
gerprint is matched against the corresponding first (or the
second) impression, which results in 10,000 authorized-
leakage recovery attacks. The successful attack rates of these
recovered fingerprints are given in Table 8, where FAR0:1

and FAR0 refer to the operating points (thresholds) of the
traditional fingerprint recognition system with false accep-
tance rates of 0.1 percent and 0, respectively. It can be seen
that it is easier to attack a traditional fingerprint recognition
system that stores the first impression (i.e., the original fin-
gerprint of the same impression) based on the artificial fin-
gerprint, the successful rates of which are 30.08 percent at
FAR0:1 and 7.31 percent at FAR0. To attack the same system
that stores a different impression of the same finger, the suc-
cessful rates are 16.29 percent at FAR0:1 and 3.11 percent at
FAR0. Let’s denote the successful attack rate as �s at a cer-
tain operating point, the possibility to perform a successful
authorized-leakage recovery can be estimated as

Pra ¼ �o�s: (27)

The results in Table 8 indicate that it is much more diffi-
cult for an attacker to break a traditional fingerprint recogni-
tion system by using the artificial fingerprint compared
with using the original fingerprint, especially when the FAR
of the system is low. Meanwhile, it is visually difficult for
the attacker to differentiate an artificial fingerprint from the
real fingerprints. The privacy of the user is thus protected
by using the artificial fingerprint. In real-world applications,
we can build a fingerprint recognition system by storing the
artificial fingerprint generated from a new capture of the
user’s finger. If the artificial fingerprint is stolen, the attacker
may treat it as an original fingerprint and use it to generate a
fake finger (or conduct a direct data injection) to attack some
other systems (with the same finger enrolled) that still use
the original fingerprint for authentication. In such a case, it
would be difficult for the attacker to launch a successful
attack, with around 0.9 percent successful attack rate (i.e.,
Pra 	 0:009) at FAR0 for loop or whorl fingers, where the
corresponding �o is around 0.3 (see Section 4.1) and the

TABLE 8
Successful Attack Rates of the Authorized-Leakage

Recovery (Values in Percentage)

FAR0:1 FAR0

Against the first impression 30.08 7.31
Against the second impression 16.29 3.11
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successful attack rate (with the ground truth orientation
known) is 3.11 percent (see Table 8).

Obviously, authorized-leakage recovery is a much easier
task compared with the full-leakage recovery (i.e., exactly
recovery). As a matter of fact, the authors in [38] show that,
even if the attacker knows nothing about the original finger-
print, he can launch a successful attack by trying 182 times
on average at FAR0:1.

5 DISCUSSIONS

The artificial fingerprint exposes the original minutiae posi-
tions. This is a known issue in the existing techniques with
the ability to preserve the fingerprint topology [17], [18]. In
our case, thanks to the incorporation of the key, it can be
addressed by transforming the original minutiae positions
spatially before the artificial fingerprint generation. People
have proposed various schemes that are able to transform
the minutiae spatially [3], [4]. Here, we apply the changing
function approach proposed in [4] for the transformation.
Given an aligned minutiae position mi ¼ ðx0

i; y
0
iÞ, its move-

ment ðDxi;DyiÞ is computed as

Dxi ¼ L1ðviÞcosðmodðu0i;pÞ þ L2ðviÞÞ
Dyi ¼ L1ðviÞsinðmodðu0i;pÞ þ L2ðviÞÞ;

(28)

where mod is the modulo operation, u0i is the aligned minu-
tia direction, L1ð�Þ and L2ð�Þ are two changing functions,
and vi is the invariant value computed by

vi ¼ fi 
 upin; (29)

where 
 denotes the inner product between two vectors, fi is
a normalized vector computed based on u0i and the original
orientation, and upin is a normalized random vector gener-
ated by the user specific key. Details of the construction of
the changing functions as well as the computation of the
invariant value can be found in [4]. In our implementation,
we take advantage of our artificial orientation (which is
always the same for the same key) and adopt it to compute
fi instead of using the original orientation.

The performance of the artificial fingerprint recognition
(with the transformed minutiae positions) on FVC2002
DB2_A using the 1vs1 protocol is given in Table 9. Compared
with the results in Table 6, the transformation slightly
reduces the accuracy of the artificial fingerprint recognition,
which is still acceptable withmore protection offered.

6 CONCLUSIONS

In this paper, artificial fingerprints are proposed in order to
protect the privacy of fingerprints. The artificial fingerprint is

generated based on theminutiae positions extracted from the
original fingerprint as well as the artificial orientation and
minutiae polarities computed from an user specific key. We
propose to generate real-look alike and diverse artificial ori-
entation by a combined orientation model guided by a set of
parameters with simple constraints. Then, a block based
approach and a function based approach are proposed for
generating the minutiae polarities, the artificial fingerprint in
the feature domain (i.e., the artificial minutiae template) can
be generated accordingly. By using the AM-FM fingerprint
model, we can also generate an artificial fingerprint image.
The proposed artificial fingerprint is real-look alike, which
can not be easily identified from the real fingerprints. This
reduces the chance of the artificial fingerprint to get attacked.
If it is stolen, only a partial information of the original finger-
print minutiae is exposed to the attacker. Furthermore, we
can assign different keys to generate different artificial finger-
prints for the replacement. The experimental results indicate
that the artificial fingerprint can be recognized at high accu-
racy, and they are visually similar to the real fingerprints.
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