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ABSTRACT
To providemore accurate, diverse, and explainable recommendation,
it is compulsory to go beyond modeling user-item interactions
and take side information into account. Traditional methods like
factorization machine (FM) cast it as a supervised learning problem,
which assumes each interaction as an independent instance with
side information encoded. Due to the overlook of the relations
among instances or items (e.g., the director of a movie is also an
actor of another movie), these methods are insufficient to distill the
collaborative signal from the collective behaviors of users.

In this work, we investigate the utility of knowledge graph
(KG), which breaks down the independent interaction assumption
by linking items with their attributes. We argue that in such a
hybrid structure of KG and user-item graph, high-order relations
— which connect two items with one or multiple linked attributes
— are an essential factor for successful recommendation. We
propose a new method named Knowledge Graph Attention Network
(KGAT) which explicitly models the high-order connectivities
in KG in an end-to-end fashion. It recursively propagates the
embeddings from a node’s neighbors (which can be users, items,
or attributes) to refine the node’s embedding, and employs
an attention mechanism to discriminate the importance of the
neighbors. Our KGAT is conceptually advantageous to existing
KG-based recommendation methods, which either exploit high-
order relations by extracting paths or implicitly modeling them
with regularization. Empirical results on three public benchmarks
show that KGAT significantly outperforms state-of-the-art methods
like Neural FM [11] and RippleNet [29]. Further studies verify
the efficacy of embedding propagation for high-order relation
modeling and the interpretability benefits brought by the attention
mechanism. We release the codes and datasets at https://github.
com/xiangwang1223/knowledge_graph_attention_network.
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1 INTRODUCTION
The success of recommendation system makes it prevalent in Web
applications, ranging from search engines, E-commerce, to social
media sites and news portals — without exaggeration, almost
every service that provides content to users is equipped with a
recommendation system. To predict user preference from the key
(and widely available) source of user behavior data, much research
effort has been devoted to collaborative filtering (CF) [12, 13, 32].
Despite its effectiveness and universality, CF methods suffer from
the inability of modeling side information [30, 31], such as item
attributes, user profiles, and contexts, thus perform poorly in sparse
situations where users and items have few interactions. To integrate
such information, a common paradigm is to transform them into
a generic feature vector, together with user ID and item ID, and
feed them into a supervised learning (SL) model to predict the
score. Such a SL paradigm for recommendation has been widely
deployed in industry [7, 24, 40], and some representative models
include factorization machine (FM) [23], NFM (neural FM) [11],
Wide&Deep [7], and xDeepFM [18], etc.

Although these methods have provided strong performance, a
deficiency is that they model each interaction as an independent
data instance and do not consider their relations. This makes them
insufficient to distill attribute-based collaborative signal from the
collective behaviors of users. As shown in Figure 1, there is an
interaction between user u1 and movie i1, which is directed by the
person e1. CF methods focus on the histories of similar users who
also watched i1, i.e., u4 and u5; while SL methods emphasize the
similar items with the attribute e1, i.e., i2. Obviously, these two types
of information not only are complementary for recommendation,
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Figure 1: A toy example of collaborative knowledge graph.
u1 is the target user to provide recommendation for. The
yellow circle and grey circle denote the important users and
items discovered by high-order relations but are overlooked
by traditional methods. Best view in color.

but also form a high-order relationship between a target user and
item together. However, existing SL methods fail to unify them and
cannot take into account the high-order connectivity, such as the
users in the yellow circle who watched other movies directed by
the same person e1, or the items in the grey circle that share other
common relations with e1.

To address the limitation of feature-based SL models, a solution
is to take the graph of item side information, aka. knowledge
graph1 [3, 4], into account to construct the predictive model. We
term the hybrid structure of knowledge graph and user-item graph
as collaborative knowledge graph (CKG). As illustrated in Figure
1, the key to successful recommendation is to fully exploit the
high-order relations in CKG, e.g., the long-range connectivities:

• u1
r1
−−→ i1

−r2
−−−→ e1

r2
−−→ i2

−r1
−−−→ {u2,u3},

• u1
r1
−−→ i1

−r2
−−−→ e1

r3
−−→ {i3, i4},

which represent the way to the yellow and grey circle, respectively.
Nevertheless, to exploit such high-order information the challenges
are non-negligible: 1) the nodes that have high-order relations with
the target user increase dramatically with the order size, which
imposes computational overload to the model, and 2) the high-order
relations contribute unequally to a prediction, which requires the
model to carefully weight (or select) them.

Several recent efforts have attempted to leverage the CKG
structure for recommendation, which can be roughly categorized
into two types, path-based [14, 25, 29, 33, 37, 39] and regularization-
based [5, 15, 33, 38]:
• Path-based methods extract paths that carry the high-order
information and feed them into predictive model. To handle
the large number of paths between two nodes, they have either
applied path selection algorithm to select prominent paths [25,
33], or defined meta-path patterns to constrain the paths [14, 36].
One issue with such two-stage methods is that the first stage of
path selection has a large impact on the final performance, but
it is not optimized for the recommendation objective. Moreover,
defining effective meta-paths requires domain knowledge, which
can be rather labor-intensive for complicated KG with diverse
types of relations and entities, since many meta-paths have to be
defined to retain model fidelity.
• Regularization-based methods devise additional loss terms that
capture the KG structure to regularize the recommender model
learning. For example, KTUP [5] and CFKG [1] jointly train

1A KG is typically described as a heterogeneous network consisting of entity-relation-
entity triplets, where the entity can be an item or an attribute.

the two tasks of recommendation and KG completion with
shared item embeddings. Instead of directly plugging high-order
relations into the model optimized for recommendation, these
methods only encode them in an implicit manner. Due to the lack
of an explicit modeling, neither the long-range connectivities are
guaranteed to be captured, nor the results of high-order modeling
are interpretable.

Considering the limitations of existing solutions, we believe it is
of critical importance to develop a model that can exploit high-order
information in KG in an efficient, explicit, and end-to-end manner.
Towards this end, we take inspiration from the recent developments
of graph neural networks [9, 17, 28], which have the potential of
achieving the goal but have not been explored much for KG-based
recommendation. Specifically, we propose a new method named
Knowledge Graph Attention Network (KGAT), which is equipped
with two designs to correspondingly address the challenges in
high-order relation modeling: 1) recursive embedding propagation,
which updates a node’s embedding based on the embeddings of its
neighbors, and recursively performs such embedding propagation
to capture high-order connectivities in a linear time complexity;
and 2) attention-based aggregation, which employs the neural
attention mechanism [6, 27] to learn the weight of each neighbor
during a propagation, such that the attention weights of cascaded
propagations can reveal the importance of a high-order connectivity.
Our KGAT is conceptually advantageous to existing methods in
that: 1) compared with path-based methods, it avoids the labor-
intensive process of materializing paths, thus is more efficient
and convenient to use, and 2) compared with regularization-based
methods, it directly factors high-order relations into the predictive
model, thus all related parameters are tailored for optimizing the
recommendation objective.

The contributions of this work are summarized as follows:

• We highlight the importance of explicitly modeling the high-
order relations in collaborative knowledge graph to provide better
recommendation with item side information.
• We develop a new method KGAT, which achieves high-order
relation modeling in an explicit and end-to-end manner under
the graph neural network framework.
• We conduct extensive experiments on three public benchmarks,
demonstrating the effectiveness of KGAT and its interpretability
in understanding the importance of high-order relations.

2 TASK FORMULATION
We first introduce the concept of CKG and highlight the high-order
connectivity among nodes, as well as the compositional relations.

User-Item Bipartite Graph: In a recommendation scenario, we
typically have historical user-item interactions (e.g., purchases and
clicks). Here we represent interaction data as a user-item bipartite
graph G1, which is defined as {(u,yui , i)|u ∈ U , i ∈ I)}, whereU
and I separately denote the user and item sets, and a link yui = 1
indicates that there is an observed interaction between user u and
item i; otherwise yui = 0.

Knowledge Graph. In addition to the interactions, we have side
information for items (e.g., item attributes and external knowledge).
Typically, such auxiliary data consists of real-world entities and



Figure 2: Illustration of the proposedKGATmodel. The left subfigure showsmodel frameworkofKGAT, and the right subfigure
presents the attentive embedding propagation layer of KGAT.

relationships among them to profile an item. For example, a movie
can be described by its director, cast, and genres. We organize the
side information in the form of knowledge graph G2, which is a
directed graph composed of subject-property-object triple facts [5].
Formally, it is presented as {(h, r , t )|h, t ∈ E, r ∈ R}, where each
triplet describes that there is a relationship r from head entity h to
tail entity t . For example, (Hugh Jackman, ActorOf, Logan) states
the fact that Hugh Jackman is an actor of the movie Logan. Note
that R contains relations in both canonical direction (e.g., ActorOf )
and inverse direction (e.g., ActedBy). Moreover, we establish a set
of item-entity alignments A = {(i, e)|i ∈ I, e ∈ E}, where (i, e)
indicates that item i can be aligned with an entity e in the KG.

Collaborative Knowledge Graph. Here we define the concept
of CKG, which encodes user behaviors and item knowledge as a
unified relational graph. We first represent each user behavior as a
triplet, (u, Interact, i), where yui = 1 is represented as an additional
relation Interact between user u and item i . Then based on the
item-entity alignment set, the user-item graph can be seamlessly
integrated with KG as a unified graph G = {(h, r , t )|h, t ∈ E ′, r ∈
R ′}, where E ′ = E ∪U and R ′ = R ∪ {Interact}.

Task DescriptionWe now formulate the recommendation task to
be addressed in this paper:

• Input: collaborative knowledge graph G that includes the user-
item bipartite graph G1 and knowledge graph G2.
• Output: a prediction function that predicts the probability ŷui
that user u would adopt item i .

High-Order Connectivity. Exploiting high-order connectivity is
of importance to perform high-quality recommendation. Formally,
we define the L-order connectivity between nodes as a multi-hop
relation path: e0

r1
−−→ e1

r2
−−→ · · ·

rL
−−→ eL , where el ∈ E ′ and rl ∈ R ′;

(el−1, rl , el ) is the l-th triplet, and L is the length of the sequence. To
infer user preference, CF methods build upon behavior similarity
among users — more specifically similar users would exhibit similar
preferences on items. Such intuition can be represented as behavior-
based connectivity like u1

r1
−−→ i1

−r1
−−−→ u2

r1
−−→ i2, which suggests

that u1 would exhibit preference on i2, since her similar user u2
has adopted i2 before. Distinct from CF methods, SL models like
FM and NFM focus on attributed-based connectivity, assuming that
users tend to adopt items that share similar properties. For example,

u1
r1
−−→ i1

r2
−−→ e1

−r2
−−−→ i2 suggests that u1 would adopt i2 since it has

the same director e1 with i1 she liked before. However, FM and NFM
treat entities as the values of individual feature fields, failing to
reveal relatedness across fields and related instances. For instance,
it is hard to model u1

r1
−−→ i1

r2
−−→ e1

−r3
−−−→ i2, although e1 serves as

the bridge connecting director and actor fields. We therefore argue
that these methods do not fully explore the high-order connectivity
and leave compositional high-order relations untouched.

3 METHODOLOGY
We now present the proposed KGAT model, which exploits high-
order relations in an end-to-end fashion. Figure 2 shows the
model framework, which consists of three main components:
1) embedding layer, which parameterizes each node as a vector
by preserving the structure of CKG; 2) attentive embedding
propagation layers, which recursively propagate embeddings from
a node’s neighbors to update its representation, and employ
knowledge-aware attention mechanism to learn the weight of each
neighbor during a propagation; and 3) prediction layer, which
aggregates the representations of a user and an item from all
propagation layers, and outputs the predicted matching score.

3.1 Embedding Layer
Knowledge graph embedding is an effective way to parameterize
entities and relations as vector representations, while preserving
the graph structure. Here we employ TransR [19], a widely used
method, on CKG. To be more specific, it learns embeds each entity
and relation by optimizing the translation principle erh + er ≈ ert , if
a triplet (h, r , t ) exists in the graph. Herein, eh , et ∈ Rd and er ∈ Rk
are the embedding for h, t , and r , respectively; and erh , e

r
t are the

projected representations of eh and et in the relation r ’s space.
Hence, for a given triplet (h, r , t ), its plausibility score (or energy
score) is formulated as follows:

д(h, r , t ) = Wr eh + er −Wr et 2
2 , (1)

whereWr ∈ R
k×d is the transformation matrix of relation r , which

projects entities from the d-dimension entity space into the k-
dimension relation space. A lower score of д(h, r , t ) suggests that
the triplet is more likely to be true true, and vice versa.

The training of TransR considers the relative order between
valid triplets and broken ones, and encourages their discrimination



through a pairwise ranking loss:

LKG =
∑

(h,r,t,t ′)∈T
− lnσ

(
д(h, r , t ′) − д(h, r , t )

)
, (2)

where T = {(h, r , t , t ′)|(h, r , t ) ∈ G, (h, r , t ′) ̸∈ G}, and (h, r , t ′) is a
broken triplet constructed by replacing one entity in a valid triplet
randomly;σ (·) is the sigmoid function. This layermodels the entities
and relations on the granularity of triples, working as a regularizer
and injecting the direct connections into representations, and
thus increases the model representation ability (evidences in
Section 4.4.3.)

3.2 Attentive Embedding Propagation Layers
Next we build upon the architecture of graph convolution
network [17] to recursively propagate embeddings along high-
order connectivity; moreover, by exploiting the idea of graph
attention network [28], we generate attentive weights of cascaded
propagations to reveal the importance of such connectivity. Here
we start by describing a single layer, which consists of three
components: information propagation, knowledge-aware attention,
and information aggregation, and then discuss how to generalize it
to multiple layers.

Information Propagation: One entity can be involved in
multiple triplets, serving as the bridge connecting two triplets
and propagating information. Taking e1

r2
−−→ i2

−r1
−−−→ u2 and

e2
r3
−−→ i2

−r1
−−−→ u2 as an example, item i2 takes attributes e1 and e2

as inputs to enrich its own features, and then contributes user u2’s
preferences, which can be simulated by propagating information
from e1 to u2. We build upon this intuition to perform information
propagation between an entity and its neighbors.

Considering an entity h, we use Nh = {(h, r , t )|(h, r , t ) ∈ G} to
denote the set of triplets where h is the head entity, termed ego-
network [21]. To characterize the first-order connectivity structure
of entity h, we compute the linear combination of h’s ego-network:

eNh =
∑

(h,r,t )∈Nh

π (h, r , t )et , (3)

where π (h, r , t ) controls the decay factor on each propagation on
edge (h, r , t ), indicating how much information being propagated
from t to h conditioned to relation r .

Knowledge-awareAttention:We implementπ (h, r , t ) via relational
attention mechanism, which is formulated as follows:

π (h, r , t ) = (Wr et )⊤tanh
(
(Wr eh + er )

)
, (4)

where we select tanh [28] as the nonlinear activation function. This
makes the attention score dependent on the distance between eh
and et in the relation r ’s space, e.g., propagating more information
for closer entities. Note that, we employ only inner product on these
representations for simplicity, and leave the further exploration of
the attention module as the future work.

Hereafter, we normalize the coefficients across all triplets
connected with h by adopting the softmax function:

π (h, r , t ) =
exp(π (h, r , t ))∑

(h,r ′,t ′)∈Nh exp(π (h, r ′, t ′))
. (5)

As a result, the final attention score is capable of suggesting
which neighbor nodes should be given more attention to capture
collaborative signals. When performing propagation forward, the
attention flow suggests parts of the data to focus on, which can be
treated as explanations behind the recommendation.

Distinct from the information propagation in GCN [17] and
GraphSage [9] which set the discount factor between two nodes as
1/
√
|Nh | |Nt | or 1/|Nt |, our model not only exploits the proximity

structure of graph, but also specify varying importance of neighbors.
Moreover, distinct from graph attention network [28] which only
takes node representations as inputs, we model the relation er
between eh and et , encoding more information during propagation.
We perform experiments to verify the effectiveness of the attention
mechanism and visualize the attention flow in Section 4.4.3 and
Section 4.5, respectively.

Information Aggregation: The final phase is to aggregate the
entity representation eh and its ego-network representations eNh
as the new representation of entity h — more formally, e(1)

h =
f (eh , eNh ). We implement f (·) using the following three types
of aggregators:
• GCN Aggregator [17] sums two representations up and applies a
nonlinear transformation, as follows:

fGCN = LeakyReLU
(
W(eh + eNh )

)
, (6)

where we set the activation function set as LeakyReLU [20];
W ∈ Rd

′×d are the trainable weight matrices to distill useful
information for propagation, and d ′ is the transformation size.
• GraphSage Aggregator [9] concatenates two representations,
followed by a nonlinear transformation:

fGraphSage = LeakyReLU
(
W(eh | |eNh )

)
, (7)

where | | is the concatenation operation.
• Bi-Interaction Aggregator is carefully designed by us to consider
two kinds of feature interactions between eh and eNh , as follows:

fBi-Interaction =LeakyReLU
(
W1(eh + eNh )

)
+

LeakyReLU
(
W2(eh ⊙ eNh )

)
, (8)

where W1,W2 ∈ Rd
′×d are the trainable weight matrices,

and ⊙ denotes the element-wise product. Distinct from
GCN and GraphSage aggregators, we additionally encode the
feature interaction between eh and eNh . This term makes the
information being propagated sensitive to the affinity between
eh and eNh , e.g., passing more messages from similar entities.

To summarize, the advantage of the embedding propagation layer
lies in explicitly exploiting the first-order connectivity information
to relate user, item, and knowledge entity representations. We
empirically compare the three aggregators in Section 4.4.2.

High-order Propagation:We can further stack more propagation
layers to explore the high-order connectivity information, gathering
the information propagated from the higher-hop neighbors.
More formally, in the l-th steps, we recursively formulate the
representation of an entity as:

e(l )
h = f

(
e(l−1)
h , e(l−1)

Nh

)
, (9)



wherein the information propagated within l-ego network for the
entity h is defined as follows,

e(l−1)
Nh

=
∑

(h,r,t )∈Nh

π (h, r , t )e(l−1)
t , (10)

e(l−1)
t is the representation of entity t generated from the previous
information propagation steps, memorizing the information from
its (l − 1)-hop neighbors; e(0)

h is set as eh at the initial information-
propagation iteration. It further contributes to the representation
of entity h at layer l . As a result, high-order connectivity like
u2

r1
−−→ i2

−r2
−−−→ e1

r2
−−→ i1

−r1
−−−→ u1 can be captured in the

embedding propagation process. Furthermore, the information from
u2 is explicitly encoded in e(3)

u1 . Clearly, the high-order embedding
propagation seamlessly injects the attribute-based collaborative
signal into the representation learning process.

3.3 Model Prediction
After performing L layers, we obtain multiple representations
for user node u, namely {e(1)

u , · · · , e
(L)
u }; analogous to item node

i , {e(1)
i , · · · , e

(L)
i } are obtained. As the output of the l-th layer is

the message aggregation of the tree structure depth of l rooted
at u (or i) as shown in Figure 1, the outputs in different layers
emphasize the connectivity information of different orders. We
hence adopt the layer-aggregation mechanism [34] to concatenate
the representations at each step into a single vector, as follows:

e∗u = e(0)
u ∥· · · ∥e

(L)
u , e∗i = e(0)

i ∥· · · ∥e
(L)
i , (11)

where ∥ is the concatenation operation. By doing so, we not
only enrich the initial embeddings by performing the embedding
propagation operations, but also allow controlling the strength of
propagation by adjusting L.

Finally, we conduct inner product of user and item representations,
so as to predict their matching score:

ŷ(u, i) = e∗u
⊤e∗i . (12)

3.4 Optimization
To optimize the recommendation model, we opt for the BPR
loss [22]. Specifically, it assumes that the observed interactions,
which indicate more user preferences, should be assigned higher
prediction values than unobserved ones:

LCF =
∑

(u,i, j )∈O
− lnσ

(
ŷ(u, i) − ŷ(u, j)

)
(13)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} denotes the training set,
R+ indicates the observed (positive) interactions between useru and
item j while R− is the sampled unobserved (negative) interaction
set; σ (·) is the sigmoid function.

Finally, we have the objective function to learn Equations (2)
and (13) jointly, as follows:

LKGAT = LKG + LCF + λ ∥Θ∥22 , (14)

where Θ = {E,Wr ,∀l ∈ R,W
(l )
1 ,W

(l )
2 ,∀l ∈ {1, · · · ,L}} is the model

parameter set, and E is the embedding table for all entities and
relations; L2 regularization parameterized by λ on Θ is conducted
to prevent overfitting. It is worth pointing out that in terms of

model size, the majority of model parameters comes from the entity
embeddings (e.g., 6.5 million on experimented Amazon dataset),
which is almost identical to that of FM; the propagation layer
weights are lightweight (e.g., 5.4 thousand for the tower structure
of three layers, i.e., 64 − 32 − 16 − 8, on the Amazon dataset).

3.4.1 Training: We optimize LKG and LCF alternatively, where
mini-batch Adam [16] is adopted to optimize the embedding loss
and the prediction loss. Adam is a widely used optimizer, which
is able to adaptively control the learning rate w.r.t. the absolute
value of gradient. In particular, for a batch of randomly sampled
(h, r , t , t ′), we update the embeddings for all nodes; hereafter, we
sample a batch of (u, i, j) randomly, retrieve their representations
after L steps of propagation, and then update model parameters by
using the gradients of the prediction loss.

3.4.2 Time Complexity Analysis: As we adopt the alternative
optimization strategy, the time cost mainly comes from two
parts. For the knowledge graph embedding (cf. Equation (2)), the
translation principle has computational complexity O(|G2 |d2). For
the attention embedding propagation part, thematrixmultiplication
of the l-th layer has computational complexity O(|G|dldl−1); and
dl and dl−1 are the current and previous transformation size. For
the final prediction layer, only the inner product is conducted, for
which the time cost of the whole training epoch is O(

∑L
l=1 |G|dl ).

Finally, the overall training complexity of KGAT is O(|G2 |d2 +∑L
l=1 |G|dldl−1 + |G|dl ).
As online services usually require real-time recommendation,

the computational cost during inference is more important that
that of training phase. Empirically, FM, NFM, CFKG, CKE, GC-
MC, KGAT, MCRec, and RippleNet cost around 700s, 780s, 800s,
420s, 500s, 560s, 20 hours, and 2 hours for all testing instances on
Amazon-Book dataset, respectively. As we can see, KGAT achieves
comparable computation complexity to SL models (FM and NFM)
and regularization-based methods (CFKG and CKE), being much
efficient that path-based methods (MCRec and RippleNet).

4 EXPERIMENTS
We evaluate our proposed method, especially the embedding
propagation layer, on three real-world datasets. We aim to answer
the following research questions:
• RQ1: How does KGAT perform compared with state-of-the-art
knowledge-aware recommendation methods?
• RQ2: How do different components (i.e., knowledge graph
embedding, attention mechanism, and aggregator selection)
affect KGAT?
• RQ3: Can KGAT provide reasonable explanations about user
preferences towards items?

4.1 Dataset Description
To evaluate the effectiveness of KGAT, we utilize three benchmark
datasets: Amazon-book, Last-FM, and Yelp2018, which are publicly
accessible and vary in terms of domain, size, and sparsity.
Amazon-book2: Amazon-review is a widely used dataset for
product recommendation [10]. We select Amazon-book from this

2http://jmcauley.ucsd.edu/data/amazon.
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Table 1: Statistics of the datasets.
Amazon-book Last-FM Yelp2018

User-Item
Interaction

#Users 70, 679 23, 566 45, 919
#Items 24, 915 48, 123 45, 538
#Interactions 847, 733 3, 034, 796 1, 185, 068

Knowledge
Graph

#Entities 88, 572 58, 266 90, 961
#Relations 39 9 42
#Triplets 2, 557, 746 464, 567 1, 853, 704

collection. To ensure the quality of the dataset, we use the 10-core
setting, i.e., retaining users and items with at least ten interactions.
Last-FM3: This is the music listening dataset collected from Last.fm
online music systems. Wherein, the tracks are viewed as the items.
In particular, we take the subset of the dataset where the timestamp
is from Jan, 2015 to June, 2015. We use the same 10-core setting in
order to ensure data quality.
Yelp20184: This dataset is adopted from the 2018 edition of the
Yelp challenge. Here we view the local businesses like restaurants
and bars as the items. Similarly, we use the 10-core setting to ensure
that each user and item have at least ten interactions.

Besides the user-item interactions, we need to construct item
knowledge for each dataset. For Amazon-book and Last-FM,wemap
items into Freebase entities via title matching if there is a mapping
available. In particular, we consider the triplets that are directly
related to the entities aligned with items, no matter which role (i.e.,
subject or object) it serves as. Distinct from existing knowledge-
aware datasets that provide only one-hop entities of items, we also
take the triplets that involve two-hop neighbor entities of items
into consideration. For Yelp2018, we extract item knowledge from
the local business information network (e.g., category, location,
and attribute) as KG data. To ensure the KG quality, we then
preprocess the three KG parts by filtering out infrequent entities
(i.e., lowever than 10 in both datasets) and retaining the relations
appearing in at least 50 triplets. We summarize the statistics of
three datasets in Table 1 and publish our datasets at https://github.
com/xiangwang1223/knowledge_graph_attention_network.

For each dataset, we randomly select 80% of interaction history
of each user to constitute the training set, and treat the remaining
as the test set. From the training set, we randomly select 10% of
interactions as validation set to tune hyper-parameters. For each
observed user-item interaction, we treat it as a positive instance,
and then conduct the negative sampling strategy to pair it with one
negative item that the user did not consume before.

4.2 Experimental Settings
4.2.1 Evaluation Metrics. For each user in the test set, we treat
all the items that the user has not interacted with as the negative
items. Then each method outputs the user’s preference scores over
all the items, except the positive ones in the training set. To evaluate
the effectiveness of top-K recommendation and preference ranking,
we adopt two widely-used evaluation protocols [13, 35]: recall@K
and ndcg@K . By default, we set K = 20. We report the average
metrics for all users in the test set.

4.2.2 Baselines. To demonstrate the effectiveness, we compare
our proposed KGAT with SL (FM and NFM), regularization-based
3https://grouplens.org/datasets/hetrec-2011/.
4https://www.yelp.com/dataset/challenge.

(CFKG and CKE), path-based (MCRec and RippleNet), and graph
neural network-based (GC-MC) methods, as follows:
• FM [23]: This is a bechmark factorization model, where considers
the second-order feature interactions between inputs. Here we
treat IDs of a user, an item, and its knowledge (i.e., entities
connected to it) as input features.
• NFM [11]: The method is a state-of-the-art factorization model,
which subsumes FM under neural network. Specially, we
employed one hidden layer on input features as suggested in [11].
• CKE [38]: This is a representative regularization-based method,
which exploits semantic embeddings derived from TransR [19]
to enhance matrix factorization [22].
• CFKG [1]: The model applies TransE [2] on the unified
graph including users, items, entities, and relations, casting
the recommendation task as the plausibility prediction of
(u, Interact, i) triplets.
• MCRec [14]: This is a path-based model, which extracts qualified
meta-paths as connectivity between a user and an item.
• RippleNet [29]: Such model combines regularization- and path-
based methods, which enrich user representations by adding that
of items within paths rooted at each user.
• GC-MC [26]: Such model is designed to employ GCN [17]
encoder on graph-structured data, especially for the user-item
bipartite graph. Here we apply it on the user-item knowledge
graph. Especially, we employ one graph convolution layers as
suggested in [26], where the hidden dimension is set equal to the
embedding size.

4.2.3 Parameter Settings. We implement our KGAT model in
Tensorflow. The embedding size is fixed to 64 for all models, except
RippleNet 16 due to its high computational cost. We optimize all
models with Adam optimizer, where the batch size is fixed at 1024.
The default Xavier initializer [8] to initialize the model parameters.
We apply a grid search for hyper-parameters: the learning rate
is tuned amongst {0.05, 0.01, 0.005, 0.001}, the coefficient of L2
normalization is searched in {10−5, 10−4, · · · , 101, 102}, and the
dropout ratio is tuned in {0.0, 0.1, · · · , 0.8} for NFM, GC-MC, and
KGAT. Besides, we employ the node dropout technique for GC-MC
and KGAT, where the ratio is searched in {0.0, 0.1, · · · , 0.8}. For
MCRec, we manually define several types of user-item-attribute-
itemmeta-paths, such as user-book-author-user and user-book-genre-
user for Amazon-book dataset; we set the hidden layers as suggested
in [14], which is a tower structure with 512, 256, 128, 64 dimensions.
For RippleNet, we set the number of hops and the memory size as 2
and 8, respectively. Moreover, early stopping strategy is performed,
i.e., premature stopping if recall@20 on the validation set does
not increase for 50 successive epochs. To model the third-order
connectivity, we set the depth of KGAT L as three with hidden
dimension 64, 32, and 16, respectively; we also report the effect
of layer depth in Section 4.4.1. For each layer, we conduct the Bi-
Interaction aggregator.

4.3 Performance Comparison (RQ1)
We first report the performance of all the methods, and then
investigate how the modeling of high-order connectivity alleviate
the sparsity issues.

https://github.com/xiangwang1223/knowledge_graph_attention_network
https://github.com/xiangwang1223/knowledge_graph_attention_network
https://grouplens.org/datasets/hetrec-2011/
https://www.yelp.com/dataset/challenge


(a) ndcg on Amazon-Book (b) ndcg on Last-FM (c) ndcg on Yelp2018
Figure 3: Performance comparison over the sparsity distribution of user groups on different datasets. The background
histograms indicate the density of each user group; meanwhile, the lines demonstrate the performance w.r.t. ndcg@20.

Table 2: Overall Performance Comparison.
Amazon-Book Last-FM Yelp2018
recall ndcg recall ndcg recall ndcg

FM 0.1345 0.0886 0.0778 0.1181 0.0627 0.0768
NFM 0.1366 0.0913 0.0829 0.1214 0.0660 0.0810
CKE 0.1343 0.0885 0.0736 0.1184 0.0657 0.0805
CFKG 0.1142 0.0770 0.0723 0.1143 0.0522 0.0644
MCRec 0.1113 0.0783 - - - -
RippleNet 0.1336 0.0910 0.0791 0.1238 0.0664 0.0822
GC-MC 0.1316 0.0874 0.0818 0.1253 0.0659 0.0790
KGAT 0.1489∗ 0.1006∗ 0.0870∗ 0.1325∗ 0.0712∗ 0.0867∗

%Improv. 8.95% 10.05% 4.93% 5.77% 7.18% 5.54%

4.3.1 Overall Comparison. The performance comparison results
are presented in Table 2. We have the following observations:

• KGAT consistently yields the best performance on all the datasets.
In particular, KGAT improves over the strongest baselines w.r.t.
recall@20 by 8.95%, 4.93%, and 7.18% in Amazon-book, Last-
FM, and Yelp2018, respectively. By stacking multiple attentive
embedding propagation layers, KGAT is capable of exploring
the high-order connectivity in an explicit way, so as to capture
collaborative signal effectively. This verifies the significance of
capturing collaborative signal to transfer knowledge. Moreover,
compared with GC-MC, KGAT justifies the effectiveness of
the attention mechanism, specifying the attentive weights w.r.t.
compositional semantic relations, rather than the fixed weights
used in GC-MC.
• SL methods (i.e., FM and NFM) achieve better performance than
the CFKG and CKE in most cases, indicating that regularization-
based methods might not make full use of item knowledge. In
particular, to enrich the representation of an item, FM and NFM
exploit the embeddings of its connected entities, while CFKG
and CKE only use that of its aligned entities. Furthermore, the
cross features in FM and NFM actually serve as the second-order
connectivity between users and entities, whereas CFKG and CKE
model connectivity on the granularity of triples, leaving high-
order connectivity untouched.
• Compared to FM, the performance of RippleNet verifies that
incorporating two-hop neighboring items is of importance to
enrich user representations. It therefore points to the positive
effect of modeling the high-order connectivity or neighbors.
However, RippleNet slightly underperforms NFM in Amazon-
book and Last-FM, while performing better in Yelp2018. One
possible reason is that NFM has stronger expressiveness, since the

hidden layer allows NFM to capture the nonlinear and complex
feature interactions between user, item, and entity embeddings.
• RippleNet outperforms MCRec by a large margin in Amazon-
book. One possible reason is that MCRec depends heavily on
the quality of meta-paths, which require extensive domain
knowledge to define. The observation is consist with [29].
• GC-MC achieves comparable performance to RippleNet in Last-
FM and Yelp2018 datasets. While introducing the high-order
connectivity into user and item representations, GC-MC forgoes
the semantic relations between nodes; whereas RippleNet utilizes
relations to guide the exploration of user preferences.

4.3.2 Performance Comparison w.r.t. Interaction Sparsity
Levels. One motivation to exploiting KG is to alleviate the sparsity
issue, which usually limits the expressiveness of recommender
systems. It is hard to establish optimal representations for inactive
users with few interactions. Here we investigate whether exploiting
connectivity information helps alleviate this issue.

Towards this end, we perform experiments over user groups of
different sparsity levels. In particular, we divide the test set into
four groups based on interaction number per user, meanwhile try
to keep different groups have the same total interactions. Taking
Amazon-book dataset as an example, the interaction numbers per
user are less than 7, 15, 48, and 4475 respectively. Figure 3 illustrates
the results w.r.t. ndcg@20 on different user groups in Amazon-book,
Last-FM, and Yelp2018. We can see that:

• KGAT outperforms the other models in most cases, especially on
the two sparsest user groups in Amazon-Book and Yelp2018.
It again verifies the significance of high-order connectivity
modeling, which 1) contains the lower-order connectivity used
in baselines, and 2) enriches the representations of inactive users
via recursive embedding propagation.
• It is worthwhile pointing out that KGAT slightly outperforms
some baselines in the densest user group (e.g., the < 2057 group
of Yelp2018). One possible reason is that the preferences of users
with too many interactions are too general to capture. High-order
connectivity could introducemore noise into the user preferences,
thus leading to the negative effect.

4.4 Study of KGAT (RQ2)
To get deep insights on the attentive embedding propagation layer
of KGAT, we investigate its impact. We first study the influence
of layer numbers. In what follows, we explore how different



Table 3: Effect of embedding propagation layer numbers (L).
Amazon-Book Last-FM Yelp2018
recall ndcg recall ndcg recall ndcg

KGAT-1 0.1393 0.0948 0.0834 0.1286 0.0693 0.0848
KGAT-2 0.1464 0.1002 0.0863 0.1318 0.0714 0.0872
KGAT-3 0.1489 0.1006 0.0870 0.1325 0.0712 0.0867
KGAT-4 0.1503 0.1015 0.0871 0.1329 0.0722 0.0871

Table 4: Effect of aggregators.
Amazon-Book Last-FM Yelp2018

Aggregator recall ndcg recall ndcg recall ndcg
GCN 0.1381 0.0931 0.0824 0.1278 0.0688 0.0847
GraphSage 0.1372 0.0929 0.0822 0.1268 0.0666 0.0831
Bi-Interaction 0.1393 0.0948 0.0834 0.1286 0.0693 0.0848

aggregators affect the performance. We then examine the influence
of knowledge graph embedding and attention mechanism.

4.4.1 Effect of Model Depth. We vary the depth of KGAT (e.g.,
L) to investigate the efficiency of usage of multiple embedding
propagation layers. In particular, the layer number is searched
in the range of {1, 2, 3, 4}; we use KGAT-1 to indicate the model
with one layer, and similar notations for others. We summarize the
results in Table 3, and have the following observations:
• Increasing the depth of KGAT is capable of boosting the
performance substantially. Clearly, KGAT-2 and KGAT-3 achieve
consistent improvement over KGAT-1 across all the board. We
attribute the improvements to the effective modeling of high-
order relation between users, items, and entities, which is carried
by the second- and third-order connectivities, respectively.
• Further stacking one more layer over KGAT-3, we observe
that KGAT-4 only achieve marginal improvements. It suggests
that considering third-order relations among entities could be
sufficient to capture the collaborative signal, which is consistent
to the findings in [14, 33].
• Jointly analyzing Tables 2 and 3, KGAT-1 consistently outperforms
other baselines in most cases. It again verifies the effectiveness
of that attentive embedding propagation, empirically showing
that it models the first-order relation better.

4.4.2 Effect ofAggregators. To explore the impact of aggregators,
we consider the variants of KGAT-1 that uses different settings
— more specifically GCN, GraphSage, and Bi-Interaction (cf.
Section 3.1), termed KGAT-1GCN, KGAT-1GraphSage, and KGAT-1Bi,
respectively. Table 4 summarizes the experimental results. We have
the following findings:
• KGAT-1GCN is consistently superior to KGAT-1GraphSage. One
possible reason is that GraphSage forgoes the interaction between
the entity representation eh and its ego-network representation
eNh . It hence illustrates the importance of feature interaction
when performing information aggregation and propagation.
• Compared to KGAT-1GCN, the performance of KGAT-1Bi verifies
that incorporating additional feature interaction can improve the
representation learning. It again illustrates the rationality and
effectiveness of Bi-Interaction aggregator.

4.4.3 Effect of KnowledgeGraph Embedding and Attention
Mechanism. To verify the impact of knowledge graph embedding
and attentionmechanism, we do ablation study by considering three

Table 5: Effect of knowledge graph embedding and attention
mechanism.

Amazon-Book Last-FM Yelp2018
recall ndcg recall ndcg recall ndcg

w/o K&A 0.1367 0.0928 0.0819 0.1252 0.0654 0.0808
w/o KGE 0.1380 0.0933 0.0826 0.1273 0.0664 0.0824
w/o Att 0.1377 0.0930 0.0826 0.1270 0.0657 0.0815

Figure 4: Real Example from Amazon-Book.

variants of KGAT-1. In particular, we disable the TransR embedding
component (cf. Equation (2)) of KGAT, termed KGAT-1w/o KGE; we
disable the attention mechanism (cf. Equation (4)) and set π (h, r , t )
as 1/|Nh |, termed KGAT-1w/o Att. Moreover, we obtain another
variant by removing both components, named KGAT-1w/o K&A.
We summarize the experimental results in Table 5 and have the
following findings:

• Removing knowledge graph embedding and attention components
degrades the model’s performance. KGAT-1w/o K&A consistently
underperforms KGAT-1w/o KGE and KGAT-1w/o Att. It makes
sense since KGATw/o K&A fails to explicitlymodel the representation
relatedness on the granularity of triplets.
• Compared with KGAT-1w/o Att, KGAT-1w/o KGE performs better
in most cases. One possible reason is that treating all neighbors
equally (i.e., KGAT-1w/o Att) might introduce noises and mislead
the embedding propagation process. It verifies the substantial
influence of graph attention mechanism.

4.5 Case Study (RQ3)
Benefiting from the attention mechanism, we can reason on high-
order connectivity to infer the user preferences on the target item,
offering explanations. Towards this end, we randomly selected one
user u208 from Amazon-Book, and one relevant item i4293 (from the
test, unseen in the training phase). We extract behavior-based and
attribute-based high-order connectivity connecting the user-item
pair, based on the attention scores. Figure 4 shows the visualization
of high-order connectivity. There are two key observations:

• KGAT captures the behavior-based and attribute-based high-
order connectivity, which play a key role to infer user preferences.
The retrieved paths can be viewed as the evidence why the item
meets the user’s preference. As we can see, the connectivity
u208

r0
−−→ Old Man’s War

r14
−−→ John Scalzi

−r14
−−−→ i4293 has the

highest attention score, labeled with the solid line in the left
subfigure. Hence, we can generate the explanation as The Last
Colony is recommended since you have watched Old Man’s War
written by the same author John Scalzi.



• The quality of item knowledge is of crucial importance. As
we can see, entity English with relation Original Language is
involved in one path, which is too general to provide high-quality
explanations. This inspires us to perform hard attention to filter
less informative entities out in future work.

5 CONCLUSION AND FUTUREWORK
In this work, we explore high-order connectivity with semantic
relations in CKG for knowledge-aware recommendation. We
devised a new framework KGAT, which explicitly models the high-
order connectivities in CKG in an end-to-end fashion. At it core
is the attentive embedding propagation layer, which adaptively
propagates the embeddings from a node’s neighbors to update the
node’s representation. Extensive experiments on three real-world
datasets demonstrate the rationality and effectiveness of KGAT.

This work explores the potential of graph neural networks
in recommendation, and represents an initial attempt to exploit
structural knowledge with information propagation mechanism.
Besides knowledge graph, many other structural information
indeed exists in real-world scenarios, such as social networks
and item contexts. For example, by integrating social network
with CKG, we can investigate how social influence affects the
recommendation. Another exciting direction is the integration of
information propagation and decision process, which opens up
research possibilities of explainable recommendation.
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