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ABSTRACT
Sequential recommendation (SR) systems excel at capturing users’
dynamic preferences by leveraging their interaction histories. Most
existing SR systems assign a single embedding vector to each item
to represent its features, and various types of models are adopted
to combine these item embeddings into a sequence representation
vector to capture the user intent. However, we argue that this rep-
resentation alone is insufficient to capture an item’s multi-faceted
nature (e.g., movie genres, starring actors). Besides, users often ex-
hibit complex and varied preferences within these facets (e.g., liking
both action and musical films in the facet of genre), which are chal-
lenging to fully represent. To address the issues above, we propose
a novel structure called Facet-AwareMulti-Head Mixture-of-Experts
Model for Sequential Recommendation (FAME). We leverage sub-
embeddings from each head in the last multi-head attention layer
to predict the next item separately. This approach captures the
potential multi-faceted nature of items without increasing model
complexity. A gating mechanism integrates recommendations from
each head and dynamically determines their importance. Further-
more, we introduce a Mixture-of-Experts (MoE) network in each
attention head to disentangle various user preferences within each
facet. Each expert within the MoE focuses on a specific preference.
A learnable router network is adopted to compute the importance
weight for each expert and aggregate them. We conduct extensive
experiments on four public sequential recommendation datasets
and the results demonstrate the effectiveness of our method over
existing baseline models.
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1 INTRODUCTION
The explosion of information online presents users with a vast
and ever-growing sea of items, from products [11] and apps [4]
to videos [7, 40]. With limited time to explore everything, recom-
mender systems (RS) have become crucial tools for helping users
make efficient and satisfying choices. However, user interests are
inherently dynamic, evolving over time and making it challenging
for platforms to deliver consistently relevant recommendations [29].
To address these challenges, sequential recommendation (SR) has
emerged as a powerful technique. This approach leverages the se-
quential nature of user interactions, typically captured as sessions
containing a series of recent item interactions, to predict the user’s
next action [9, 30].

User 1

genre Action Action Action Action

starring Jackie Chan Jason Statham Tony Jaa Jean Reno

User 2

genre Adventure Musical Biography Action

starring
Hugh

Jackman

Another

Action Movie

Another

Movie starred by

Hugh Jackman
Hugh

Jackman

Hugh

Jackman

Hugh

Jackman

Timeline

Watching History Recommendation

Figure 1: A motivation example.

Mainstream SR systems assign a single embedding vector to each
item, capturing its features. Recurrent neural networks (RNNs) [14,
15], attention-based models [17, 24, 25, 39], graph-based models [2,
12, 32, 35], and others combine these item embeddings into a se-
quence representation vector to capture the user intent. This repre-
sentation is used to predict the next item (e.g., selecting the item
with the highest inner product with the sequence representation
vector). However, a single embedding cannot well capture an item’s
multifaceted nature (e.g., movie genres and starring) [6, 38]. This
is particularly problematic when different facets of an item can
influence user intent. As illustrated in Figure 1, User 1’s watch
history suggests a strong preference for action movies. In this case,
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recommending another action movie might be appropriate. Con-
versely, User 2’s movie choices range across genres but all feature
Hugh Jackman. In this case, recommending another movie starring
Hugh Jackman might be more relevant. These examples highlight
how user interests can be dominated by a single facet (genre or
actor) within a category (movie). Furthermore, in more realistic
scenarios, users can have multiple preferences within a single facet.
For example, a user might enjoy both action and musical movies in
the facet of genre. Recognizing and addressing these diverse pref-
erences within a sequence is crucial for generating more effective
recommendations that cater to specific user interests [6]. Failing
to capture the dominant facet and the specific preferences within
each facet can lead to suboptimal recommendations. This highlights
the need for recommender systems that can effectively model the
dynamic and multi-faceted nature of user interests.

Existing research addresses user intent complexity by using
hierarchical windows [12, 37] to capture multi-level user intents
from recent items, or by utilizing item representations frommultiple
items in the sequence instead of using the last item’s representation
only to recommend the next interacted item [6]. However, these
methods still neglect the multi-faceted nature of items themselves.

To solve the aforementioned issues, we propose a novel struc-
ture called Facet-Aware Multi-Head Mixture-of-Experts Model for
Sequential Recommendation (FAME). We leverage sub-embeddings
from each head in the last multi-head attention layer to predict the
next item separately. This approach captures the potential multi-
faceted nature of items (e.g., genres, starring) without increasing
model complexity. A gating mechanism integrates recommenda-
tions from each head and dynamically determines their importance.
Furthermore, we introduce a Mixture-of-Experts (MoE) network:
this network replaces the query matrix in the self-attention layer,
enabling the model to disentangle various user preferences within
each facet. Each expert within the MoE focuses on a specific pref-
erence within each facet. A learnable router network is adopted to
compute the importance weight for each expert and aggregate them.
(e.g., whether action or musical movies are the stronger preference).

To summarize, our contributions in this paper are as follows:

• We propose a Multi-Head Prediction Mechanism to enhance
the recommendation quality. This design facilitates captur-
ing the potential multi-facet features of the items without
increasing space requirements or the number of parameters.

• We propose a Mixture-of-Experts (MoE) network that im-
proves user preference modeling by disentangling multiple
preferences in each facet within a sequence. This module
seamlessly integrates with existing attention-based models.

• Our model demonstrates significant effectiveness compared
to various baseline categories (sequential, pre-trained, multi-
intent) on four public datasets.

2 RELATEDWORK
2.1 Sequential Recommendation
Recent advancements in neural networks and deep learning have
spurred the development of various models to extract rich latent
semantics from user behavior sequences and generate accurate
recommendations. Convolutional Neural Networks (CNNs) [26],

Recurrent Neural Networks (RNNs) [14], Transformer-based mod-
els [17, 24, 25, 39], andGraphNeural Networks (GNNs) [2, 12, 32, 35]
have been widely employed to enhance representation learning
and recommendation performance. Self-supervised learning (SSL)
has emerged as a promising technique for sequential recommen-
dation [3, 20, 23, 33, 35, 38], with methods like CL4SRec [33] and
ICLRec [3] employing data augmentation and contrastive learn-
ing to improve sequence representations and capture user intents.
Additionally, research has focused on modeling multiple user in-
tents, such as the hierarchical window approach in MSGIFSR [12]
and Atten-Mixer [37], or the multi-item-based representation in
MiasRec [6]. Furthermore, incorporating auxiliary information like
item categories or attributes [1, 41] and textual descriptions [21]
has been explored to enrich item representations. The integration
of large language models (LLMs) is another emerging trend in the
field [28, 31, 36]. However, these approaches are beyond the scope
of this paper.

2.2 Sparse Mixtures of Experts (SMoE)
The Mixture-of-Experts (MoE) architecture has emerged as a pow-
erful tool for handling complex tasks by distributing computations
across multiple specialized models, or experts. While MoE models
can significantly enhance model capacity, their computational over-
head due to routing data to all experts can be prohibitive. To address
this, Sparse Mixture of Experts (SMoE) was introduced, enabling
each data point to be processed by a carefully selected subset of
experts [5, 8, 10]. This approach offers the potential for substantial
computational savings without compromising performance.

While SMoE has shown promise in various domains, its appli-
cation in sequential recommendation remains relatively under-
explored. Leveraging SMoE in this context could unlock new op-
portunities to enhance recommendation quality by effectively cap-
turing and modeling diverse user preferences within a sequence.

3 PRELIMINARIES
3.1 Notations and Problem Statement
Let U and V represent the user set and item set, where 𝑢 ∈ U
(resp. 𝑣 ∈ V) denotes an individual user (resp. item). Consequently,
|U| and |V| denote the sizes of user set and item set, respec-
tively. For each user 𝑢, we define their interaction sequence S𝑢 =

{𝑣 (𝑢 )1 , · · · , 𝑣 (𝑢 )
𝑖

, · · · , 𝑣 (𝑢 )𝑡 } as a chronologically ordered list of items.
Here, 𝑣 (𝑢 )

𝑖
∈ V represents the item that user 𝑢 interacted with at

time step 𝑖 , and 𝑡 denotes the length of the interaction sequence for
user 𝑢. Given a user interaction sequence S𝑢 , the goal of sequential
recommendation is to predict the item that user 𝑢 will interact with
at the next time step, 𝑡 + 1. Formally, we can define the problem as:

𝑣
(∗)
𝑢 = argmax

𝑣𝑖 ∈V
𝑃 (𝑣 (𝑢 )

𝑡+1 = 𝑣𝑖 | S𝑢 ) (1)

3.2 Multi-Head Self-Attention
(1) Item Embeddings: The model first obtains embeddings for

each item in the sequence (denoted as 𝑥 ∈ R𝑑 ).
(2) Query, Key, Value Vectors: Each item embedding (𝑥) is

then projected into three vectors:
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• Query Vector (𝑞): Represents what the model is currently
looking for in the sequence.

• Key Vector (𝑘): Captures the content of the current item.
• Value Vector (𝑣): Contains the actual information associ-
ated with the item.

These projections are calculated using three trainable weight
matrices (denoted by𝑊𝑄 ,𝑊𝐾 ∈ R𝑑×𝑑𝑘 ,𝑊𝑉 ∈ R𝑑×𝑑𝑣 ):

𝑞 = 𝑥𝑇 ·𝑊𝑄 , 𝑘 = 𝑥𝑇 ·𝑊𝐾 , 𝑣 = 𝑥𝑇 ·𝑊𝑉 , (2)

where 𝑑𝑘 is the dimension of query and key vector, and 𝑑𝑣
is the dimension of value vector.

(3) Attention Scores: The model calculates an attention score
(𝛼𝑖 𝑗 ) for each pair of items (𝑖, 𝑗) in the sequence. This score re-
flects the similarity between the current item’s query vector
(𝑞𝑖 ) and the key vector (𝑘 𝑗 ) of each other item. A normaliza-
tion term (

√
𝑑) is used to account for the vector dimension.

The attention scores are then normalized using a softmax
function (denoted by ˜𝛼𝑖 𝑗 ) to create a probability distribution
across all items, indicating the relative importance of each
item to the current one.

𝛼𝑖 𝑗 =
𝑞𝑇
𝑖
· 𝑘 𝑗

√
𝑑

, ˜𝛼𝑖 𝑗 =
𝑒𝑥𝑝 (𝛼𝑖 𝑗 )∑𝑡
𝑗=1 𝑒𝑥𝑝 (𝛼𝑖 𝑗 )

(3)

(4) Item representation: The item representation 𝑓𝑖 is calcu-
lated based onweighted sum of value vectors in the sequence.
The weights for this summation are derived from the previ-
ously calculated attention scores ( ˜𝛼𝑖 𝑗 ):

𝑓𝑖 =

𝑡∑︁
𝑗=1

˜𝛼𝑖 𝑗 · 𝑣 𝑗 (4)

4 METHODS
4.1 Overview
This section introduces our proposed framework with a high-level
overview, which is displayed in Figure 2. The framework incor-
porates two key components: the Facet-Aware Multi-Head Pre-
diction Mechanism (detailed in Section. 4.2), which learns to
represent each item with multiple sub-embedding vectors, each
capturing a specific facet of the item; and theMixture-of-Experts
Self-Attention Layer (detailed in Section. 4.3), which employs a
Mixture-of-Experts (MoE) network within each subspace to capture
the users’ specific preferences within each facet. Our framework
can be seamlessly integrated to any attention-based recommenda-
tion model. In this paper, we incorporate our framework to SASRec
for illustration.

4.2 Facet-Aware Multi-Head Prediction
Mechanism

4.2.1 Original SASRec Prediction Process. In the original SASRec
model, the final prediction for the next item is based on the last
item’s representation (𝑓𝑡 , calculated by Equation 4, which can also
be regarded as the sequence representation) obtained from the
last self-attention layer. This representation is processed through a
feed-forward network (FFN) with ReLU activation for non-linearity,

followed by layer normalization, dropout, and a residual connection:

FFN(𝑓𝑡 ) = RELU(𝑓 𝑇𝑡 ·𝑊1 + 𝑏1)𝑇 ·𝑊2 + 𝑏2,
𝐹𝑡 = LayerNorm(𝑓𝑡 + Dropout(FFN(𝑓𝑡 ))),

(5)

Here, 𝑊1,𝑊2 ∈ R𝑑×𝑑 , 𝑏1, 𝑏2 ∈ R𝑑 are all learnable parameters.
The final user preference score for item 𝑣 at step (𝑡 + 1) is then
calculated as the dot product between the item embedding (𝑥𝑣 ) and
the sequence representation (𝐹𝑡 ):

𝑃 (𝑣𝑡+1 = 𝑣 |S𝑢 ) = 𝑥𝑇𝑣 · 𝐹𝑡 , (6)

Top-𝑘 items with the highest preference scores are recommended
to the user.

4.2.2 Motivation for Our Approach. The multi-head self-attention
mechanism splits the sequence representation and item embed-
dings into multiple subspaces (heads). Research suggests that these
heads can allocate different attention distributions so as to perform
different tasks [27]. We hypothesize that these heads could also cap-
ture different facets of items (e.g., genre and starring actors in the
context of movie recommendation). This ability to capture multi-
faceted information has the potential to improve recommendation
quality.

4.2.3 Proposed Multi-Head Recommendation. Instead of perform-
ing a single attention function with 𝑑-dimensional keys, values and
queries, it is found beneficial to linearly project the queries, keys
and values 𝐻 times with different, learned linear projections to 𝑑𝑘 ,
𝑑𝑘 and 𝑑𝑣 dimensions, respectively [27]. Here, 𝐻 is the number of
heads, and 𝑑𝑘 , 𝑑𝑘 and 𝑑𝑣 are typically set to 𝑑′ = 𝑑

𝐻
.

Leveraging the multi-head attention mechanism, we propose a
novel approach where each head independently generates recom-
mendations. The final item embedding from head ℎ is denoted as
𝑓
(ℎ)
𝑡 ∈ R𝑑 ′ . We then process this embedding similarly as we do for
the original model:

FFN′ (𝑓 (ℎ)𝑡 ) = RELU(𝑓 (ℎ)𝑇𝑡 ·𝑊 ′
1 + 𝑏′1)

𝑇 ·𝑊 ′
2 + 𝑏′2,

𝐹
(ℎ)
𝑡 = LayerNorm(𝑓 (ℎ)𝑡 + Dropout(FFN′ (𝑓 (ℎ)𝑡 ))),

(7)

Unlike the original FFN (Equation 5), the feed-forward network
applied to each head (FFN′) operates on a reduced dimension of
𝑑′. The learnable parameters for FFN′ are therefore adjusted ac-
cordingly:𝑊 ′

1 ,𝑊
′
2 ∈ R𝑑 ′×𝑑 ′ , 𝑏′1, 𝑏

′
2 ∈ R𝑑 ′ . This adaptation aligns

with the dimensionality of sub-embeddings within each head. To
enhance parameter efficiency and improve performance, we adopt a
shared feed-forward network (FFN′) across all attention heads. Each
head generates the preference score for each item independently,
i.e.,

𝑃 (ℎ) (𝑣𝑡+1 = 𝑣 |S𝑢 ) = 𝑥
(ℎ)𝑇
𝑣 · 𝐹 (ℎ)

𝑡 , (8)

where 𝑥 (ℎ)𝑣 ∈ R𝑑 ′ is the sub-embedding of the item 𝑣 , reflecting the
features of the specific facet corresponding to the attention head
ℎ. Specifically, it is calculated by a linear transformation from its
original embedding:

𝑥
(ℎ)
𝑣 = 𝑥𝑇𝑣 ·𝑊 (ℎ)

𝑓
, (9)

with𝑊 (ℎ)
𝑓

∈ R𝑑×𝑑 ′ being a learnable matrix.
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(a) Original Transformer Block (b) FAME’s Transformer Block
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input
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Head 2

Self-Attention
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Self-Attention
Head 3

Concatenation

output

Figure 2: Overview of the proposed model: (a) illustrates the original Transformer block, while (b) depicts the architecture of
our proposed FAME model. For simplicity, the LayerNorm and Dropout operations following the FFN (FFN’) are omitted from
the Figure

In order to integrate the recommendation results from each head,
we employ a gate mechanism to determine the relative importance
of each head’s recommendations:

𝑔 =

[
𝐹
(1)
𝑡 | . . . |𝐹 (𝐻 )

𝑡

]𝑇
·𝑊𝑔 + 𝑏𝑔,

𝑔 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑔)
(10)

Here, [·|·] denotes the concatenation operation. Each element
𝑔 (ℎ) ∈ [0, 1] within the vector 𝑔 represents the importance of head
ℎ in determining the user’s dominant interest or preference. For
instance, a higher𝑔 (ℎ) for a genre-focused head indicates a stronger
preference for specific movie genres, while a higher value for an
actor-focused head suggests a preference for movies starring par-
ticular actors. The gate mechanism, parameterized by𝑊𝑔 ∈ R𝑑×𝐻
and 𝑏𝑔 ∈ R𝐻 , learns to assign appropriate weights to each head
based on the user’s current context. Finally, we compute a unified
preference score for each item by weighting the recommendations
from each head:

𝑃 (𝑣𝑡+1 = 𝑣 |S𝑢 ) =
𝐻∑︁
𝑖=1

𝑔 (ℎ) · 𝑃 (ℎ) (𝑣𝑡+1 = 𝑣 |S𝑢 ) (11)

This approach allows the model to exploit the strengths of each
headwhile assigning appropriateweights based on their importance
in the specific context.

4.3 Mixture-of-Experts Self-Attention Layer
While the Facet-Aware Multi-Head mechanism effectively captures
item facets, users often exhibit more granular and diverse prefer-
ences within these facets. To address this, we introduce the Mixture-
of-Experts Self-Attention Layer (MoE-Attention), as illustrated in
Figure 3.

We assume that each facet can be decomposed into 𝑁 distinct
preferences. For instance, a genre facet might include preferences
for action, comedy, musicals, etc. To capture the nuanced prefer-
ences within each facet of a sequence, we replace the standard query

⨁
⨁
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…
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Figure 3: MoE Self-Attention Network: Integrated Item Rep-
resentation Calculation. This diagram visualizes the compu-
tational process for determining the integrated item repre-
sentation of the final item (𝑓 (ℎ)𝑡 ) within a specific head (ℎ) of
our proposed model.

generationmechanism in self-attention (Equation 2) with aMixture-
of-Experts (MoE) network in each head. This network consists of
𝑁 experts, each represented by a trainable matrix𝑊 (ℎ)

𝑄 (𝑛) ∈ R
𝑑×𝑑 ′

(where 𝑛 ∈ [1, 𝑁 ]). Each expert within a head is designed to capture
one of these preferences by transforming an item embedding 𝑥𝑖

(i.e., the embedding of the 𝑖𝑡ℎ item in the sequence) into an expert
query vector 𝑞 (ℎ)

𝑖 (𝑛) ∈ R
𝑑 ′ as follows:

𝑞
(ℎ)
𝑖 (𝑛) = 𝑥𝑇𝑖 ·𝑊 (ℎ)

𝑄 (𝑛) (12)

The key vector (𝑘 (ℎ)
𝑗

) and value vector (𝑣 (ℎ)
𝑗

) of the 𝑗𝑡ℎ sequence
item in head ℎ are computed using the same linear transformations
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as in the original SASRec model:

𝑘
(ℎ)
𝑗

= 𝑥𝑇𝑗 ·𝑊 (ℎ)
𝐾

, 𝑣
(ℎ)
𝑗

= 𝑥𝑇𝑗 ·𝑊 (ℎ)
𝑉

(13)

Then the attention score for the 𝑖𝑡ℎ item relative to the 𝑗𝑡ℎ item in
head ℎ by expert 𝑛 is computed as:

𝛼
(ℎ)
𝑖 𝑗 (𝑛) =

𝑞
(ℎ)𝑇
𝑖 (𝑛) · 𝑘 (ℎ)𝑇

𝑗
√
𝑑′

,

𝛼
(ℎ)
𝑖 𝑗 (𝑛) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝛼 (ℎ)

𝑖1(𝑛) , · · · , 𝛼
(ℎ)
𝑖𝑡 (𝑛) )

(14)

The item representation of the 𝑖𝑡ℎ item for head ℎ and expert 𝑛
(𝑓 (ℎ)
𝑖 (𝑛) ) is then calculated as a weighted sum of value vectors, where

the weights are the corresponding attention scores:

𝑓
(ℎ)
𝑖 (𝑛) =

𝑡∑︁
𝑗=1

𝛼
(ℎ)
𝑖 𝑗 (𝑛) · 𝑣

(ℎ)
𝑗

(15)

As illustrated in Figure 4, consider a genre-focused head with two
experts: one for action movies and another for musical movies.
As detailed in Section. 4.2.1, the standard SASRec model treats the
representation of the final item in a sequence as the overall sequence
representation. To illustrate our MoE attention mechanism, we
focus on the attention scores associated with the 4𝑡ℎ (and final)
item in the sequence. The first expert’s query vector of the 4𝑡ℎ

item (𝑞 (ℎ)4(1) ) would assign higher attention scores to action movies

(items 1 and 3), while the second expert’s query vector (𝑞 (ℎ)4(2) ) would
focus on musical movies (items 2 and 4). Consequently, the final
item’s representation (𝑓 (ℎ)4(1) ) generated by the first expert would lean
towards recommending action movies, whereas the representation
(𝑓 (ℎ)4(2) ) from the second expert would favor musical movies.

An Action

Movie

A Musical

Movie

Action Movies

Musical Movies

Top-2 attention scores from expert 1 

Top-2 attention scores from expert 2 

𝑓4(1)
(ℎ)

𝑓4(2)
(ℎ)

recommend

recommend

The item representation for the 4th item (movie) from expert 1

The item representation for the 4th item (movie) from expert 2

Figure 4: An example on attention scores distribution and
recommendation results among different experts on genre-
focused head

To dynamically determine the importance of each preference
within a facet (e.g., whether action ormusical is the preferred genre),
we introduce a router network parameterized by𝑊 (ℎ)

𝑒𝑥𝑝 ∈ R(𝑛 ·𝑑 ′ )×𝑛 .
This network assigns an importance score 𝛽

(ℎ)
𝑖 (𝑛) ∈ (0, 1) to each

Table 1: Dataset statistic

Dataset #users #items #actions avg.length density

Beauty 22,363 12,101 198,502 8.8 0.07%
Sports 25,598 18,357 296,337 8.3 0.05%
Toys 19,412 19,392 167,597 8.6 0.04%

ML-20m 96,726 16,297 185,6746 19.2 0.11%

item representation generated by each expert 𝑓 (ℎ)
𝑖 (𝑛) . The importance

scores are computed as follows:

𝛽
(ℎ)
𝑖 · = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

[
𝑓
(ℎ)
𝑖 (1) | · · · |𝑓

(ℎ)
𝑖 (𝑛)

]𝑇
·𝑊 (ℎ)

𝑒𝑥𝑝 ) (16)

The integrated item representation 𝑓
(ℎ)
𝑖

for the 𝑖𝑡ℎ item in head ℎ
is then computed as a weighted sum of the expert query vectors:

𝑓
(ℎ)
𝑖

=

𝑁∑︁
𝑛=1

𝛽
(ℎ)
𝑖 (𝑛) · 𝑓

(ℎ)
𝑖 (𝑛) (17)

The integrated item representation (𝑓 (ℎ)
𝑖

) represents the overall
preference at the 𝑖𝑡ℎ timestamp within head ℎ. For instance, for the
case in Figure 4, a higher weight for 𝑓 (ℎ)4(1) (resp. 𝑓

(ℎ)
4(2) ) would push

the model towards recommending action (resp. musical) movies.

4.4 Deployment and Training
4.4.1 Model Deployment. Our FAME model is built upon the SAS-
Rec (or any attention-based) framework, with the final Transformer
layer replaced by our proposed architecture.

4.4.2 Training Pipeline. We initiate our model by pre-training an
attention-based sequential recommendation model (e.g., SASRec).
Subsequently, we replace Transformer block’s query matrix at the
final layer with our proposed MoE network (Section 4.3) while
retaining the original key and value matrices. The newly introduced
components, including the head-specific FFN′ (Equation 7), gate
mechanism (Equation 10), and router (Equation 16), are randomly
initialized. The entire model is then fine-tuned end-to-end.

4.4.3 Training Objectives. We empirically found that using a global
cross-entropy loss function leads to better performance in sequen-
tial recommendation. Therefore, we adopt the following loss func-
tion for training:

L𝑐𝑒 = −
∑︁
𝑢∈U

log

(
𝑒𝑥𝑝 (𝑥 (𝑢 )𝑇

𝑡+1 · 𝑓 (𝑢 )𝑡 )∑
𝑖 𝑒𝑥𝑝 (𝑥𝑇𝑖 · 𝑓 (𝑢 )𝑡 )

)
(18)

5 EXPERIMENTS
5.1 Datasets
We conduct experiments on four public datasets. Beauty, Sports and
Toys are three subcategories of Amazon review data introduced
in [19]. ML-20m is a subset of the MovieLens dataset [13], contain-
ing approximately 20 million ratings from 138,493 users on 27,278
movies. Following [33, 41], only "5-core" sequences are remained
in the 4 datasets, in which all users and items have at least 5 inter-
actions. The statistics of the prepared datasets are summarized in
Table 1.
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Table 2: Performance comparison of different methods on top-𝑘 recommendation

Dataset Metric GRU4Rec SASRec BERT4Rec CORE CL4SRec ICLRec DuoRec A-Mixer MSGIFSR MiaSRec FAME Improv.

Beauty

HR@5 0.0408 0.0508 0.0510 0.0331 0.0623 0.0664 0.0504 0.0507 0.0518 0.0524 0.0710 6.9%
HR@10 0.0623 0.0761 0.0745 0.0664 0.0877 0.0918 0.0691 0.0752 0.0771 0.0795 0.0978 6.2%
HR@20 0.0895 0.1057 0.1075 0.1071 0.1195 0.1252 0.0912 0.1033 0.1105 0.1125 0.1345 7.4%
NDCG@5 0.0273 0.0318 0.0343 0.0164 0.0440 0.0480 0.0363 0.0350 0.0344 0.0362 0.0508 5.8%
NDCG@10 0.0342 0.0400 0.0419 0.0271 0.0521 0.0562 0.0424 0.0421 0.0429 0.0449 0.0593 5.5%
NDCG@20 0.0410 0.0474 0.0502 0.0373 0.0601 0.0646 0.0479 0.0504 0.0508 0.0532 0.0687 6.3%

Sports

HR@5 0.0210 0.0266 0.0252 0.0150 0.0338 0.0384 0.0225 0.0217 0.0268 0.0270 0.0400 4.2%
HR@10 0.0339 0.0412 0.0395 0.0342 0.0498 0.0543 0.0327 0.0321 0.0425 0.0435 0.0580 6.8%
HR@20 0.0527 0.0618 0.0607 0.0609 0.0723 0.0753 0.0476 0.0469 0.0634 0.0651 0.0820 8.9%
NDCG@5 0.0136 0.0158 0.0166 0.0072 0.0235 0.0266 0.0161 0.0165 0.0171 0.0180 0.0277 4.1%
NDCG@10 0.0178 0.0205 0.0212 0.0134 0.0287 0.0317 0.0193 0.0188 0.0221 0.0233 0.0337 6.3%
NDCG@20 0.0225 0.0256 0.0265 0.0201 0.0344 0.0370 0.0231 0.0235 0.0279 0.0288 0.0402 8.6%

Toys

HR@5 0.0369 0.0489 0.0464 0.0338 0.0658 0.0792 0.0481 0.0565 0.0576 0.0581 0.0820 3.5%
HR@10 0.0524 0.0676 0.0677 0.0699 0.0912 0.1043 0.0666 0.0819 0.0831 0.0828 0.1065 2.1%
HR@20 0.076 0.0908 0.0968 0.1114 0.1209 0.1382 0.0879 0.1099 0.1150 0.1143 0.1409 1.9%
NDCG@5 0.0247 0.0329 0.0322 0.0158 0.047 0.0579 0.0356 0.403 0.0407 0.0408 0.0603 4.1%
NDCG@10 0.0296 0.0389 0.0391 0.0274 0.0552 0.0660 0.0415 0.481 0.0492 0.0488 0.0681 3.2%
NDCG@20 0.0356 0.0448 0.0464 0.0378 0.0627 0.0745 0.0469 0.574 0.0577 0.0567 0.0759 1.9%

ML-20m

HR@5 0.1365 0.1305 0.1446 0.0655 0.1205 0.1380 0.1458 0.1325 0.1303 0.1367 0.1538 5.5%
HR@10 0.2052 0.2016 0.2172 0.1312 0.1853 0.2070 0.2164 0.2022 0.2013 0.2071 0.2246 3.4%
HR@20 0.2981 0.2996 0.3132 0.2251 0.2760 0.2997 0.3108 0.2994 0.2978 0.3021 0.3230 3.1%
NDCG@5 0.0927 0.0858 0.0964 0.0347 0.0804 0.0927 0.0986 0.0899 0.0844 0.0918 0.1046 6.1%
NDCG@10 0.1148 0.1086 0.1197 0.0558 0.1012 0.1149 0.1212 0.1121 0.1119 0.1144 0.1276 5.3%
NDCG@20 0.1382 0.1333 0.1438 0.0794 0.1240 0.1382 0.1450 0.1334 0.1357 0.1383 0.1513 4.3%

5.2 Evaluation Metrics
We rank the prediction on the whole item set without negative sam-
pling [18]. Performance is evaluated on a variety of evaluation met-
rics, including Hit Ratio@𝑘 (HR@𝑘), and Normalized Discounted
Cumulative Gain@𝑘 (NDCG@𝑘) where 𝑘 ∈ {5, 10, 20}. Following
standard practice in sequential recommendation [17, 22, 25, 41], we
employ a leave-one-out evaluation strategy: for each user sequence,
the final item serves as the test data, the penultimate item as the
validation data, and the remaining items as the training data.

5.3 Baselines
We compare our proposed method against a set of baseline models
as follows:

• GRU4Rec [14]: it employs a GRU to encode sequences and
incorporates a ranking-based loss.

• SASRec [17]: this method is a pioneering work utilizing
self-attention to capture dynamic user interests.

• BERT4Rec [25]: this approach adapts the BERT architecture
for sequential recommendation using a cloze task.

• CORE [16]: it proposes a representation-consistent encoder
based on linear combinations of item embeddings to ensure
that sequence representations are in the same space with
item embeddings.

• CL4SRec [33]: this method combines contrastive learning
with a Transformer-based model through data augmentation
techniques (i.e., item crop, mask, and reorder).

• ICLRec [3]: this approach improves sequential recommen-
dation by conducting clustering and contrastive learning on

user intentions represented by cluster centroids to enhance
recommendation.

• DuoRec [20]: this research investigates the representation
degeneration issue in sequential recommendation and offers
solutions based on contrastive learning techniques.

• MSGIFSR [12]: it captures multi-level user intents using a
Multi-granularity Intent Heterogeneous Session Graph.

• Atten-Mixer [37]: this method leverages concept-view and
instance-view readouts for multi-level intent reasoning in-
stead of using the GNN propagation.

• MiasRec [6]: this approach utilizes multiple item represen-
tations in the sequence instead of only using the last item’s
representation as the sequence representation to capture
diverse user intents.

5.4 Settings and Implementation Details
We employ original implementations for SASRec, ICLRec, MSGIFSR,
Atten-Mixer, and MiasRec public in their papers. For GRU4Rec and
CORE , we leverage the RecBole library1 [34], while BERT4Rec,
CL4SRec, andDuoRec are implemented using the SSLRec library2 [23].
Hyperparameters for all models are set according to their respec-
tive papers. We experiment with embedding dimensions of 64 and
128 (as experimented, larger dimensions often lead to convergence
issues) and select the configuration that yields the best performance
for each model.

Our method is implemented in PyTorch. The model is optimized
by Adam optimizer with a learning rate of 0.001, 𝛽1 = 0.9, 𝛽2 =

1https://github.com/RUCAIBox/RecBole
2https://github.com/HKUDS/SSLRec
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Figure 5: The performances comparison varying the number of heads in each dataset. The metric in (a)-(d) is NDCG@20, and
the metric in (e)-(h) is HR@20.
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Figure 6: The performances comparison varying the number of experts in each dataset. The metric in (a)-(d) is NDCG@20,
and the metric in (e)-(h) is HR@20. The red horizontal line in each subfigure indicates the peak performance (NDCG@20 or
HR@20) achieved by FAME𝑤/𝑜 𝑀𝑜𝐸 within that dataset, as shown in Figure 5.

0.999. We employ a batch size of 256. For FAME hyperparameters,𝐻
and 𝑁 are tuned within the ranges {1, 2, 4, 8, 16} and {2, 4, 8, 16, 32},
respectively. All experiments were conducted on a single NVIDIA
RTX A5000 GPU.

5.5 Overall Performance
Table 2 presents a comprehensive comparison of FAME against
various baseline models. Our experimental findings reveal several
key observations:
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𝐹17
(1)

𝐹17
(2)

[1975,2018,1447,2019,2020,2021,518,2022,2023,1411,2024,2025,2026,509,2027,2028,523]

User 230

History Sequence:

997 4608 3141 1390 8049

3601 5832 8106 14486 3142

523 4866 4049 6430 1783

1782 404 5029 3225 996

523 2028 649 2362 57

1335 403 2356 551 1328

490 2039 3558 825 371

386 752 4345 4963 5173

Item

Representation
Top-20 Recommendation Results (IDs)

523 649 2356 490 403

997 2028 4608 752 5173

386 371 825 1328 1278

996 4345 57 4936 1789

Gate Value

𝟎. 𝟏𝟖

𝟎. 𝟖𝟐

Integrated Results (IDs)

FAME

523 997 4608 2356 490

649 5173 752 386 371

386 996 825 1278 1789

3142 1390 3601 5214 404

Simple Concatenation (equal gate value)

Head 1

Head 2

Results from Head 1

Results from Head 2

𝒈(𝟏)

𝒈(𝟐)

recommend

recommend

Figure 7: Recommendation results for user 230 in the Sports
dataset. User history is displayed at the top. The ground truth
next item (item 2028) is highlighted.

• Limitations of TraditionalModels:While RNN and Transformer-
based models have shown success in sequential tasks, their
direct application to recommendation often yields subopti-
mal results due to a lack of consideration for real-world user
and item complexities (e.g., GRU4Rec, BERT4Rec).

• Importance of Intent Modeling: Models that explicitly
capture user intents significantly outperform traditional se-
quential models. This improvement is attributed to their
ability to: 1) handle noisy user behavior by focusing on un-
derlying preferences rather than superficial interactions (e.g.,
ICLRec), or 2) disentangle multiple co-existing user intents
within a sequence (e.g., MiasRec).

• Superiority of our model FAME: Our proposed FAME
model consistently outperforms all baselines across datasets.
This highlights the importance of considering item multi-
faceted nature and disentangling user preferences within
each facet for effective sequential recommendation.

5.6 Ablation Study and Parameters Study
This subsection presents the ablation study to evaluate the contribu-
tions of our proposed components and conduct corresponding hy-
perparameter tuning.We begin by examining FAME𝑤/𝑜 𝑀𝑜𝐸 , which
excludes the MoE module, to assess the impact of the facet-aware
multi-head prediction mechanism (introduced in Section. 4.2) and
determine the optimal number of attention heads in Section. 5.6.1.
Subsequently, using the optimized head configuration, we evaluate
the complete FAME model to validate the effectiveness of the MoE
module and identify the optimal number of experts in Section. 5.6.2.

5.6.1 Impact of the number of heads. Figure 5 illustrates the per-
formance variation with different numbers of heads (𝐻 ), treated as
a hyperparameter. We compare the original SASRec model with
FAME𝑤/𝑜 𝑀𝑜𝐸 to isolate the impact of our multi-head prediction
mechanism. We experiment with 𝐻 values of {1, 2, 4, 8, 16}. When
𝐻 = 1, our FAME𝑤/𝑜 𝑀𝑜𝐸 is reduced to the original SASRec model
with single head. As noted in [27], computational costs remain
constant when varying the number of heads (𝐻 ) while maintaining
a fixed embedding dimension (𝑑).
Benefits ofmulti-head attention:Both SASRec and FAME𝑤/𝑜 𝑀𝑜𝐸

exhibit performance improvements with multiple heads, however,
excessive heads can lead to diminishing returns, aligning with find-
ings in Transformer [27] and SASRec [17].
Superiority of facet-aware architecture: FAME𝑤/𝑜 𝑀𝑜𝐸 consis-
tently outperforms SASRec, demonstrating the effectiveness of our
facet-aware approach.
Dataset-specific optimal head count: The optimal number of
heads varies across datasets. Beauty, Sports, and Toys benefit from
fewer heads, suggesting simpler item facets, while ML-20m requires
more heads to capture complex item characteristics.

5.6.2 Impact of the number of experts. Figure 6 illustrates the in-
fluence of the number of experts (𝑁 ) within each attention head on
model performance. We set 𝐻 to the optimal value determined for
FAME𝑤/𝑜 𝑀𝑜𝐸 and compare its performance (red horizontal line
in each subfigure) to that of FAME by varying 𝑁 in {2, 4, 8, 16, 32}.
FAME simplifies to FAME𝑤/𝑜 𝑀𝑜𝐸 when 𝑁 is set to 1.

FAME outperforms FAME𝑤/𝑜 𝑀𝑜𝐸 across all datasets. This im-
provement can be attributed to the effectiveness of the MoE compo-
nent, as evidenced by the existence of an optimal 𝑁 value in each
subfigure that surpasses the performance of FAME𝑤/𝑜 𝑀𝑜𝐸 . While
the Beauty dataset exhibits diminishing returns for 𝑁 greater than
4, suggesting simpler user preferences, the other datasets benefit
from a larger number of experts. In particular, ML-20m show per-
formance gains with increasing 𝑁 , indicating the presence of more
complex and diverse user preferences. However, excessive experts
(𝑁 = 32) might lead to overfitting in the Sports and Toys dataset.

5.7 Case Study
To illustrate the effectiveness of our facet-aware mechanism, Fig-
ure 7 presents recommendation results for user 230, along with cor-
responding head importance scores (calculated using Equation 10).
For simplicity, we set the number of heads to two and focus on the
Sports dataset.

The figure clearly demonstrates the diversity of recommenda-
tions across different heads, highlighting the ability of our model to
capture distinct item facets. The calculated head importance scores
reveal that head 2 better aligns with user 230’s preferences (0.82 vs
0.18), as evidenced by the inclusion of the ground truth item (item
2028) in its recommendation list. The integrated recommendation,
incorporating both heads with appropriate weights, successfully
predicts the ground truth item.

In contrast, a traditional approach concatenating sub-embeddings
from all heads without considering head importance fails to capture
the user’s dominant preference, resulting in the omission of the
ground truth item in the recommendation list.

6 CONCLUSION
In this paper, we propose a Facet-Aware Multi-Head Mixture-of-
Experts Model for Sequential Recommendation (FAME), leveraging
sub-embeddings from each head in the last multi-head attention
layer to predict the next item separately. This approach captures the
potential multi-faceted nature of items without increasing model
complexity. AMixture-of-Experts (MoE) network is adopted in each
attention head to disentangle various user preferences within each
facet. Each expert within the MoE focuses on a specific preference,
and the importance score is calculated by a router network, which
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is used to aggregate the overall preference. Extensive experiments
demonstrate the effectiveness of our method over existing baseline
models.
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