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ABSTRACT
Although various techniques have been proposed to generate adver-
sarial samples for white-box attacks on text, little attention has been
paid to black-box attacks, which are more realistic scenarios. In this
paper, we present a novel algorithm, DeepWordBug, to effectively
generate small text perturbations in a black-box setting that forces
a deep-learning classifier to misclassify a text input. We employ
novel scoring strategies to identify the critical tokens that, if mod-
ified, cause the classifier to make an incorrect prediction. Simple
character-level transformations are applied to the highest-ranked
tokens in order to minimize the edit distance of the perturbation,
yet change the original classification. We evaluated DeepWord-
Bug on eight real-world text datasets, including text classification,
sentiment analysis, and spam detection. We compare the result of
DeepWordBug with two baselines: Random (Black-box) and Gradi-
ent (White-box). Our experimental results indicate that DeepWord-
Bug reduces the prediction accuracy of current state-of-the-art
deep-learning models, including a decrease of 68% on average for a
Word-LSTM model and 48% on average for a Char-CNN model.

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Computing methodologies→ Machine learning;
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Adversarial samples; Text Sequence; Deep Learning Classifier; Black-
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1 INTRODUCTION
Deep learning has achieved remarkable results in the field of natural
language processing (NLP), including sentiment analysis, relation
extraction, and machine translation [17, 29, 30]. However, recent
studies have shown that adding small modifications to test inputs
can fool state-of-the-art deep classifiers, resulting in incorrect clas-
sifications [7, 28]. This phenomenon was first formulated as adding
very small and often imperceptible perturbations on images, which
could fool deep classifiers on image classification tasks. It natu-
rally raises concerns about the robustness of deep learning sys-
tems, considering that they have become core components of many
security-sensitive applications such as text-based spam detection.

Formally, for a given classifier F and test sample x, recent lit-
erature defined such perturbations as vector ∆x and the resulting
sample x′ as an adversarial sample[7]:

x′ = x + ∆x, ∥∆x∥p < ϵ, x′ ∈ X
F (x) , F (x′) or F (x′) = t

(1)

Figure 1: Perspective API: A example of deep learning text classification ap-
plications, which is a black-box scenario

Here we denote a machine learning classifier as F : X→ Y, where
X is the sample space, x ∈ X denotes a single sample and Y de-
scribes the set of output classes. The strength of the adversary, ϵ ,
measures the permissible transformations. The choice of condition
in Eq. (1) indicates two methods for finding adversarial examples:
whether they are untargeted(F (x) , F (x′)) or targeted (F (x′) = t )
[2].

The choice of ∆x is typically an Lp -norm distance metric. Recent
studies [3, 7, 20, 28] used three norms L∞, L2 and L0. Formally for
∆x = x′ − x ∈ Rd , the Lp norm is

∥∆x∥p = p

√√√ p∑
i=1

|x ′i − xi |p (2)

The L∞ norm measures the maximum change in any dimension.
This means an L∞ adversary is limited by the maximum change
it can make to each feature but can alter all the features by up
to that maximum [7]. The L2 norm corresponds to the Euclidean
distance between x and x′ [3]. This distance can still remain small
when small changes are applied to many different features. An L0
adversary is limited by the number of feature variables it can alter
[20].

A third parameter for categorizing recent methods, in addition to
targeted/untargeted and ∆ choices, is whether the assumption of an
adversary is black-box or white box. An adversarymay have various
degrees of knowledge about the model it tries to fool, ranging
from no information to complete information. In the black box
setting, an adversary is only allowed to query the target classifier
and does not know the details of learned models or the feature
representations of inputs. Since the adversary does not know the
feature set, it can only manipulate input samples by testing and
observing a classification model’s outputs. In thewhite box setting,
an adversary has access to the model, model parameters, and the
feature set of inputs. Similar to the black-box setting, the adversary
is still not allowed to modify the model itself or change the training
data.
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Figure 1 depicts the Perspective API[9] from Google, which is a
deep learning based text classification system that predicts whether
a message is toxic or not. This service can be accessed directly from
the API website which makes querying the model uncomplicated
and widely accessible. The setting is a black-box scenario as the
model is run on cloud servers and its structure and parameters are
not available. Many state-of-the-art deep learning applications have
the similar system design: the learning model is deployed on the
cloud servers, and users can access the model via an app through a
terminal machine (frequently a mobile device). In such cases, a user
could not examine or retrieve the inner structure of the models.
Therefore, we believe that the black-box attack is generally more
realistic than the white-box.

Most studies of adversarial examples in the literature use the
white-box assumption [3, 7, 20, 28]. One study proposed by [19]
showed that it is possible to create adversarial samples that suc-
cessfully reduce the classification accuracy without knowing the
model structure or parameters on image classification taks.

Recent studies have focused on image classification and typi-
cally created imperceptible modifications to pixel values through
an optimization procedure [3, 7, 20, 28]. Szegedy et al. [28] first
observed that DNN models are vulnerable to adversarial pertur-
bation (by limiting the modification using L2 norm) and used the
Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) al-
gorithm to find adversarial examples. Their study also found that
adversarial perturbations generated from one Convolutional Neural
Network (CNN) model can also force other CNN models to produce
incorrect outputs. Subsequent papers have explored other strategies
to generate adversarial manipulations, including using the linear
assumption behind a model [7] (by limits on L∞ norm), saliency
maps [20] (by limits on L0 norm), and evolutionary algorithms [18].
Recently, Carlini et al. proposed a group of attacking methods with
optimization techniques to generate adversarial images with even
smaller perturbations [3].

Figure 2: Example of a WordBug generated adversarial sequence. Part (1)
shows an original text sample and part (2) shows an adversarial sequence gen-
erated from the original sample in Part (1). From Part (1) to Part (2), only a
few characters are modified; however this fools the deep classifier to return
a wrong classification.

In this study, we focus on generating adversarial samples on
text data. Crafting adversarial examples on discrete inputs is fun-
damentally different from creating them for continuous inputs.
Continuous input such as images can be naturally represented as

points in a continuous Rd space (d denotes the total number of
pixels in an image). Using an Lp -norm based distance metric to limit
the modification on images appears natural and intuitive. However,
for text inputs it is difficult to search for small text modifications
because of the following reasons:

(1) Text input x is symbolic. Perturbation on x is hard to define.
(2) No metric has been defined to measure text difference. Lp -

norms makes sense on continuous pixel values, but not on
texts since they are discrete.

Due to these reasons, the original definition of adversarial modi-
fications (from Equation 1): ∆x = x′ − x cannot be applied directly
to text inputs. Shown in Figure 3, one feasible definition of adver-
sarial modifications on text can be the edit distance between text x
and text x′ that is defined as the minimal edit operations that are
required to change x to x′.

Multiple recent studies [21, 25] defined adversarial perturbations
on RNN-based text classifiers. [21] first chose the word at a random
position in a text input, then used a projected Fast Gradient Sign
Method to perturb the word’s embedding vector. The perturbed vec-
tor is projected to the nearest word vector in the word embedding
space, resulting in an adversarial sequence (adversarial examples
in the text case). This procedure may, however, replace words in
an input sequence with totally irrelevant words since there is no
hard guarantee that words close in the embedding space are se-
mantically similar. [25] used the “saliency map” of input words and
complicated linguistic strategies to generate adversarial sequences
that are semantically meaningful to humans. However, this strategy
is difficult to perform automatically.

We instead design scoring functions to adversarial sequences
by making small edit operations to a text sequence such that a hu-
man would consider it similar to the original sequence. The small
changes should produce adversarial words which are imperceptibly
different to the original words. We do this by first targeting the
important tokens in the sequence and then executing a modifica-
tion on those tokens (defined in Section 2) that can effectively force
a deep classifier to make a wrong decision. An example of adver-
sarial sequence we define is shown in Figure 2. The original text
input is correctly classified as positive sentiment by a deep RNN
model. However, by changing only a few characters, the generated
adversarial sequence can mislead the deep classifier to a wrong
classification (negative sentiment in this case).

Contributions:This paper presents an effective algorithm, Deep-
WordBug (or WordBug in short), that can generate adversarial
sequences for natural language inputs to evade deep-learning clas-
sifiers. Our novel algorithm has the following properties:

• Black-box: Previous methods require knowledge of the
model structure and parameters of the word embedding
layer, while our method can work in a black-box setting.

• Effective: Using several novel scoring functions on eight
real-world text classification tasks, our WordBug can fool
two different deep RNN models more successfully than the
state-of-the-art baselines (Figure 6). Empirically, we also
find that adversarial examples generated by our method to
fool one deep model can evade similar models (Figure 7).
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• Simple: WordBug uses simple character-level transforma-
tions to generate adversarial sequences, in contrast to previ-
ous works that use projected gradient or multiple linguistic-
driven steps.

• Small perturbations to human observers: WordBug can
generate adversarial sequences that look quite similar to
seed sequences.

We believe that the techniques we present on text adversarial
sequences can shed light in discovering the vulnerability of using
DNN on other discrete inputs like malwares.

2 DEEPWORDBUG
For the rest of the paper, we denote samples in the form of pair
(x,y), where x = x1x2x3...xn is an input text sequence including n
tokens (each token could be either a word or a character in different
models) and y set including {1, ...,K} is a label of K classes. A
machine learning model is represented as F : X→ Y, a function
mapping from the input set to the label set.

2.1 Background
2.1.1 Recurrent Neural Networks. Recurrent neural networks

(RNN) [24] are a group of neural networks that include recurrent
structures, artificial neuron structures with loops, to capture the
sequential dependency among items of a sequence. RNNs have
been widely used and have been proven to be effective on vari-
ous NLP tasks including sentiment analysis[27], parsing[26] and
translation[1]. Due to their recursive nature, RNNs canmodel inputs
of variable length and can capture the complete set of dependencies
among all items being modeled, such as all spatial positions in a
text sample. To handle the “vanishing gradient” issue of training
basic RNNs, Hochreiter et al. [8] proposed an RNN variant called
the Long Short-term Memory (LSTM) network that achieves better
performance comparing to vanilla RNNs on tasks with long-term
dependencies.

2.1.2 Convolutional Neural Network. Convolutional neural net-
works (CNN) [10] are another group of neural networks that in-
clude convolutional layers, a network layer designed to capture
the connectivity pattern in the input, to better extract features. A
convolutional layer includes a set of small filters, which is a small
array with rectangle shape. During calculation, every filter slides
around the layer input, and at every place does a multiplication
with the layer inputs and forms a rectangle shape output. The final
output of a convolutional layer is the combination of all the filter
outputs.

CNN was initially designed to work for image tasks; however, it
has recently been shown to work well on language inputs as well
[30] and even achieve state-of-the-art performance.

2.1.3 Word Embedding Models. Machine learning models, when
processing text, must first discretize a text into tokens. These tokens
can then be fed into the model. Words are often used as the smallest
unit for input to a model. A word embedding is a mapping that
projects everyword in a dictionary to a unique vector in some vector
space. Such mappings transform the discrete representations of
words into features on a continuous space, which is more conducive
to use with machine learning models.

Figure 3: An example of black box adversarial sample

Word embeddings have shown success in many NLP tasks [4, 16,
22]. Such models hold a dictionary and build the word embedding
based on the dictionary. To be able to work with words not in the
dictionary, word embedding based models often add a special entry
in the dictionary called “out of vocabulary,” or “unknown”. Those
models work well if the word embedding is well constructed and
covers most words that occur in the data.

2.1.4 Character Level Models. While word-level models using
word embeddings are dominant in NLP tasks [1, 5], it is often
easier, and sometimes more effective, to start from scratch and
directly train a model with characters as inputs [30]. In a character-
based model, every character is treated as one token and usually
represented as a one-hot encoded vector. [30] showed that when
trained on large datasets, deep networks can use character level
inputs to achieve state-of-the-art results.

2.2 Method: Black-box Generation of
Adversarial Sequences

This paper focuses on the black-box untargeted attacks. By the
phrase “black-box attack,” , we assume the attacker cannot access
the structure, parameters or gradient of the target model. This is
a realistic setting, because most modern machine learning classi-
fiers are deployed as a service to receive users’ inputs and provide
corresponding outputs.

In the typical white-box setting of adversarial generation scenar-
ios, gradients are used to guide the modification of input tokens
from an original sample to an adversarial sample. However, gradi-
ents are hard to define on symbolic text inputs. Also in black-box
settings, calculating gradients is not possible since the model pa-
rameters are not observable.

Therefore, we design a method to generate adversarial mod-
ifications on the input tokens directly, without the guidance of
gradients. Considering the vast search space of possible changes
(among all words/characters changes in an input example), we pro-
pose a two step approach to crafting adversarial samples in the
black-box setting:

• Step 1: Determine the important tokens to change.
• Step 2:Modify them slightly, creating “imperceivable” changes

which can evade a target deep learning classifier.

Specifically, to find important tokens, we design scoring func-
tions to evaluate which tokens are important for the target model
to make its decision. These scoring functions are used to determine
the importance of any word to the final prediction. Once the pri-
mary tokens have been ascertained, we design and use a simple
but powerful algorithm to transform those tokens and form an
adversarial sample.
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2.3 Step 1: Token Scoring Function and
Ranking

First, we construct scoring functions to determine which tokens are
important for the prediction. Our key idea is to score the importance
of tokens in a input sequence according to the classification from
the classifier. The proposed scoring functions have the following
properties:

(1) Able to correctly reflect the importance of words for the
prediction.

(2) Work without relying the knowledge of the parameters
and/or structure of the classification model.

(3) Efficient to calculate.
In the following, we explain the four scoring functions we pro-

pose: Replace-1 Score, Temporal Head Score, Temporal Tail Score,
and Combination Score.We assume the input sequence x = x1x2...xn ,
where xi represents the token at the ith position. In order to rank
tokens by importance, we need to measure the effect of the ith
token on the output classification.

2.3.1 Replace-1 Score (R1S). In the continuous case (e.g., image),
suppose a small perturbation changes xi to x ′i . The resulting change
of prediction output ∆F (x) can be approximated using the partial
derivative of this ith feature:

∆F (x) = F (x′) − F (x) ≈ (x ′i − xi )
∂F (x)
∂xi

(3)

However, in a black-box setting, ∂F (x)∂xi
is not available. Therefore,

we directly measure the effect of replacing token xi with x ′i as the
Replace-1 Score (R1S):

R1S(xi ) = F (x1,x2, ...,xi−1,xi , ...,xn )
− F (x1,x2, ...,xi−1,x ′i , ...,xn )

However, the search space of possible x ′i is still very large. There-
fore, we choose x ′i to be the token “unknown”, or so-called “out of
vocabulary.” Bymeasuring the effect of changing xi to be “unknown,”
we achieve a fair comparison of the importance of the tokens.

2.3.2 Temporal Head Score (THS). Since RNNs model inputs
tokens in a sequential (temporal) manner, it is logical to compute
token importance by the sequential prediction. Therefore we define
a temporal head score (THS) of the ith token in an input sequence
x as the difference between the model’s prediction score as it reads
up to the ith token, and the model’s prediction score as it reads up
to token i − 1:

TS(xi ) = F (x1,x2, ...,xi−1,xi ) − F (x1,x2, ...,xi−1)
The Temporal Head Score of every token in the input sequence
can be calculated efficiently by a single forward pass in the RNN
models.

2.3.3 Temporal Tail Score (TTS). The problem with the Tempo-
ral Head Score is that it scores a token based on its preceding tokens.
However, tokens following that specific token are also important
for the purpose of classification. Therefore we define the Temporal
Tail Score as the complement of the Temporal Head Score. It com-
pares the difference between two trailing parts of a sentence, the
one containing a certain token versus the one that does not. The
difference reflects whether the token influences the final prediction

This is definitely my favorite restaurant 

0.586

0.998This is definitely

This is

0.608

0.969This is definitely my favorite restaurant

This is definitely my favorite restaurant
⊕

Model

Model

Model

Model

Combined Score of “Definitely”

Head 0.998-0.586=0.412

Tail 0.969-0.608=0.361

Combined 0.412+0.361=0.773

Figure 4: Combined score of “Definitely”: A combination of Temporal Head
Score and Temporal Tail Score

when coupled with tokens that followed. The Temporal Tail Score
(TTS) of the token xi is calculated by:

TTS(xi ) = F (xi ,xi+1,xi+2, ...,xn ) − F (xi+1,xi+2, ...,xn )
2.3.4 Combined Score (CS). Since the Temporal Head Score and

Temporal Tail Score both model the importance of a token from
opposing directions, we can combine them to ascertain the impor-
tance of a token via its entire surrounding context. We calculate
the Combined Score (CS) function as:

CS(xi ) = THS(xi ) + λ(TTS(xi ))
where λ is a hyperparameter. The calculation of combined score is
sketched in Figure 4.

Once we estimate the importance of each token in the input
sequence, we select the topm tokens to perturb in order to create
an adversarial sequence.

Figure 5: Illustration of scoring the token “favorite” in the input sequence
“This is definitely my favorite restaurant”. For each scoring method (Replace-
1, Temporal Head, and Temporal Tail), the score of the token is equal to the
prediction score of the red part minus the prediction score of the green part.

2.4 Step 2: Token Transformer
Any adversarial text generator needs a token transformer; that
is, a mechanic to perturb text. Given the topm important tokens
from a scoring function, the second part of creating the adversarial
sequence is to modify or perturb the tokens. For the character based
model, the modification of a token can be done directly. That is, we
can either substitute the token with a random one, or substitute it
with a certain symbol such as space. However, for the word based
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Original Swap Substitution Deletion Insertion
Team → Taem Texm Tem Tezam
Artist → Artsit Arxist Artst Articst

Computer → Comptuer Computnr Compter Comnputer
Table 1: Different transformer functions and their results.

models the transformation is more complicated, since the search
space is large.

Previous approaches (summarized in Table 6) modify words
following the gradient direction (gradient of the target adversarial
class w.r.t the tokens) or following some perturbation guided by the
gradient. However, there are no gradients available in a black-box
scenario. Therefore, we propose efficient methods to modify a given
word, and we do this by deliberately creating misspelled words.
The motivation is similar to the image scenario where we want to
make imperceptibly small changes to the input such that the the
output classification changes. We define these small changes in text
inputs as modifications of few individual characters.

The key observations are words are symbolic and learned classi-
fication models handle words through a dictionary to represent a
finite set of possible words. The size of the typical NLP dictionary
is much smaller than the possible combinations of characters. This
means if we deliberately create misspelled words on important
words, we can easily convert those important words to “unknown”
(i.e., words not in the dictionary). Unknown words are mapped to
the “unknown” embedding vector, which is likely vastly different
than the embedding for the original word. Our results (Section 3)
strongly indicate that this simple strategy can effectively force deep
learning models to make wrong classifications.

Many strategies can be employed to create such misspellings.
However, following the original definition of adversarial samples
from [7], we prefer small changes to the original word as we want
the generated adversarial sequence and its original sequence to
appear (visually or morphologically) similar to human observers.
Therefore, we use the Levenshtein distance (edit distance) [11],
which is a metric that measures the similarity between sequences.
While restricting the edit distance does not guarantee a cogent or
coherent sentence meaning in a technical grammatic sense, it con-
nects to the fact that humans have been shown capable of reading
and comprehending sentences including a small number of typos,
which has been researched in several psychological studies[23].
Setting restrictions on the maximum edit distance difference allows
us to generate a sample that is readily understandable to human
observers while tolerating a defined and limited number of typos.

We propose four similar methods:
(1) Swap: Swap two adjacent letters in the word.
(2) Substitution: Substitute a letter in the word with a ran-

dom letter.
(3) Deletion: Delete a random letter from the word.
(4) Insertion: Insert a random letter in the word.

These transforms are shown in Table 1. The edit distance for the
substitution, deletion and insertion operations is 1 and for the swap
operation is 2.

These methods do not guarantee the original word is changed to
a misspelled word. It is possible for a word to “collide” with another
word after the transformation. However, the probability of collision
is very small as there are 267 ≈ 8 × 109 combinations for 7 letter

#Training #Testing #Classes Task

AG’s News 120,000 7,600 4 News
Categorization

Amazon Review
Full 3,000,000 650,000 5 Sentiment

Analysis
Amazon Review
Polarity 3,600,000 400,000 2 Sentiment

Analysis

DBPedia 560,000 70,000 14 Ontology
Classification

Yahoo! Answers 1,400,000 60,000 10 Topic
Classification

Yelp Review Full 650,000 50,000 5 Sentiment
Analysis

Yelp Review Polarity 560,000 38,000 2 Sentiment
Analysis

Enron Spam Email 26,972 6,744 2 Spam E-mail
Detection

Table 2: Dataset details

words without hyphens and apostrophes, but a dictionary often
includes no more than 50, 000 words, making the space very sparse.

Different transformation algorithms can also be applied to the
character-based models. In this case, the operation of modifying
any token will lead to the difference of 1 on the edit distance.

The adversarial sample generation of DeepWordBug is sum-
marized in Algorithm 1. From the algorithm, we could tell that
generating adversarial samples using DeepWordBug takes at most
O(n) queries to the original model, where n is the sequence length.
Algorithm 1 DeepWordBug Algorithm

Input: Input sequence x = x1x2 . . . xn , RNN classifier F (·),
Scoring Function S(·), Transforming function T (·), maximum

allowed pertubation on edit distance ϵ .
1: for i = 1..n do
2: scores[i] = S(xi ; x)
3: end for
4: Sort scores into an ordered index list: L1 .. Ln by descending

score
5: x′ = x
6: cost = 0, j = 1
7: while cost < ϵ do
8: cost = cost + Transform(x ′Lj )
9: j + +
10: end while
11: Return x′

3 EXPERIMENTS ON EFFECTIVENESS OF
ADVERSARIAL SEQUENCES

We evaluated the effectiveness of our algorithm by conducting
experiments on different deep learning models across several real-
world NLP datasets. In particular, we wanted to answer the follow-
ing research questions:

• Does the accuracy of deep learning models decrease when
fed the adversarial samples?

• Do the adversarial samples generated by our method trans-
fer between models?

• Are DeepWordBug strategies robust to configuration pa-
rameters, such as dictionary size or transformer choices?
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Character Inputs Word Inputs
Dataset Mean Median Mean Median
AG’s News 602.96 596 40.6 40
Amazon Review
Full 657.87 626 82.61 75

Amazon Review
Polarity 657.45 628 82.57 74

DBPedia 639.39 623 54.48 56
Yahoo! Answers 623.44 623 85.2 57
Yelp Review Full 694.64 649 130.8 98
Yelp Review Polarity 697.03 649 129.53 101
Enron Spam 772.91 748 190.03 150

Table 3: Dataset Sample Length Statistics. Mean and median words (or char-
acters) per sample in each dataset.

3.1 Experimental Setup
We performed 4 experiments to answer our research questions. Our
experimental set up follows:

• Datasets: In our experiments, we use 7 large-scale text
datasets from [30] together with the Enron Spam Dataset
[15], which includes a variety of NLP tasks, e.g., text clas-
sification, sentiment analysis and spam detection. Details
of the datasets are listed in Table 2.

• Target Models: To show that our method is effective, we
performed our experiments on two well trained models:
1. Word-level LSTM (Word-LSTM), and 2. Character-level
CNN (Char-CNN).

Word-LSTM: The Word-level LSTM is a Bi-directional
LSTM, which contains an LSTM in both directions (read-
ing from first word to last and from last word to first). The
network contains a random embedding layer to accept the
word inputs. The embedding vectors are then fed through
two LSTM layers (one for each direction) with 100 hidden
nodes each. The hidden states of each direction are con-
catenated at the output and fed to a fully connected layer
for the classification.

Char-CNN:Weuse the same character-level CNN from
[30] which uses one-hot encoded characters as inputs to a
9-layer convolutional network.

The performance of the models without adversarial
samples is presented in Table 4. In the non-adversarial
setting, these models are similar to state-of-the-art results
on these datasets.

• Platform:We train the target deep-learning models and
implement attacking methods using software platform Py-
Torch 0.3.0. All the experiments run on a server machine,
whose operating system is Ubuntu 14.04 and have 4 Titan
X GPU cards.

• Evaluation: Performance of the attacking methods is mea-
sured by the accuracy of the deep-learning models on the
generated adversarial sequences. The lower the accuracy,
the more effective is the attacking method. Essentially it
indicates the adversarial samples can successfully fool the
deep-learning classifier model. The maximum allowed per-
turbation ϵ is a hyperparameter, measured using edit dis-
tance.

3.2 Methods in comparison
To evaluate our white-box scoring functions, we implemented two
other methods as baselines and compared them to our proposed

Dataset \Model Char-CNN LSTM BiLSTM
AG’s News 89.96 88.45 90.49
Amazon Review Full 61.10 61.96 61.97
Amazon Review Polarity 95.20 95.43 95.46
DBPedia 98.37 98.65 98.65
Yahoo! Answers 71.01 73.42 73.40
Yelp Review Full 63.46 64.86 64.69
Yelp Review Polarity 95.26 95.87 95.92
Enron Spam 95.63 96.92 96.4

Table 4: Models’ accuracy in the non-adversarial setting

method. All three methods use the same transformer function be-
cause we assume that the selected words should be modified to
minimize edit distance. In total, the 3 methods are:

(1) Random (baseline): This scoring function randomly se-
lects tokens as targets. In other words, it has no method to
determine which tokens to attack.

(2) Gradient (baseline): Contrary to random selection which
uses no knowledge of the model, we also compare to full
knowledge of the model, where gradients are used to find
the most important tokens. Following equation 3, the gra-
dient method uses the size of gradient w.r.t the original
classification to decide which tokens should be changed.
This method of selecting tokens is proposed in [25].

(3) DeepWordBug (ourmethod):Weuse ourwhite-box scor-
ing functions to find the most important tokens. In our
implementations, we use our 4 different scoring functions:
Replace-1 Score, Temporal Head Score, Temporal Tail Score
and the Combined Score.

For the Word-LSTM model, we use our 4 different transformers
to change the words: substitution, deletion, insertion, swap. For the
character model, we use the substitution transformer to change the
words.

3.3 Experimental Results on Classification
We analyze the effectiveness of the attacks on the two models
(Word-LSTM, Char-CNN) across eight datasets.

Main Results:
Model accuracy results on all 8 datasets when the maximum

edit distance difference is limited to 30 (ϵ = 30) are summarized
in Table 5. It is clear that when modifying at most 30 characters
in the input sequence, our method successfully generates samples
that cause state-of-the-art deep learning classifiers to lose much
accuracy, thus successfully evading the classifier. Figure 6 (b)(d)
shows a direct comparison of the effectiveness of our attack to the
baseline methods: Suppose the original classification accuracy as
standard of performance, DeepWordBug reduce 68% performance
of the Word-LSTM model and 48% performance of the Char-CNN
model, which is much better than baselines in comparison.

For the Word-LSTM model, when ϵ = 30 DeepWordBug with
Combined Scoring and Substitution Transformer reduce model ac-
curacy from 90% to around 25% on the AG’s News Dataset and from
95% to around 36% on the Amazon Review Polarity Dataset. For the
Char-CNN model, when ϵ = 30 DeepWordBug with Replace-1 scor-
ing and Substitution Transformer can reduce the model accuracy
from 90% to around 30% on the AG’s News Dataset and from 95%
to 46% on the Amazon Review Polarity Dataset.

From Table 3, we can see that the mean and median sample
lengths for each dataset are much larger than the number of words
and characters modified. For example, for the Word-LSTM model
on the Enron Spam Dataset, we changed only 16% of the words
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Word-LSTM Model

Baselines WordBug
Original Random Gradient Replace-1 Temporal Head Temporal Tail Combined
Acc(%) Acc(%) Decrease Acc(%) Decrease Acc(%) Decrease Acc(%) Decrease Acc(%) Decrease Acc(%) Decrease

AG’s News 90.5 89.3 1.33% 48.5 10.13% 36.1 60.08% 42.5 53.01% 21.3 76.48% 24.8 72.62%
Amazon Review Full 62.0 61.1 1.48% 55.7 10.13% 18.6 70.05% 27.1 56.30% 17.0 72.50% 16.3 73.76%
Amazon Review Polarity 95.5 93.9 1.59% 86.9 8.93% 40.7 57.36% 58.5 38.74% 42.6 55.37% 36.2 62.08%
DBPedia 98.7 95.2 3.54% 74.4 24.61% 28.8 70.82% 56.4 42.87% 28.5 71.08% 25.3 74.32%
Yahoo! Answers 73.4 65.7 10.54% 50.0 31.83% 27.9 61.93% 34.9 52.45% 26.5 63.86% 23.5 68.02%
Yelp Review Full 64.7 60.9 5.86% 53.2 17.76% 23.4 63.83% 36.6 43.47% 20.8 67.85% 24.4 62.28%
Yelp Review Polarity 95.9 95.4 0.55% 88.4 7.85% 37.8 60.63% 70.2 26.77% 34.5 64.04% 46.2 51.87%
Enron Spam Email 96.4 67.8 29.69% 76.7 20.47% 39.1 59.48% 56.3 41.61% 25.8 73.22% 48.1 50.06%
Mean 6.82% 16.46% 63.02% 44.40% 68.05% 64.38%
Median 2.57% 13.95% 61.28% 43.17% 69.46% 65.15%
Standard Deviation 9.81% 8.71% 4.94% 9.52% 6.77% 9.56%

Char-CNN Model
Baselines WordBug

Original Random Gradient Replace-1 Temporal Head Temporal Tail Combined
Acc(%) Acc(%) % Decrease Acc(%) Decrease Acc(%) Decrease Acc(%) Decrease Acc(%) Decrease Acc(%) Decrease

AG’s News 90.0 82.4 8.36% 62.3 30.74% 30.8 65.80% 74.1 17.66% 58.6 34.90% 60.4 32.88%
Amazon Review Full 61.1 51.0 16.53% 47.0 23.04% 25.6 58.17% 58.1 4.89% 32.5 46.79% 35.0 42.70%
Amazon Review Polarity 95.2 93.4 1.91% 84.3 11.41% 46.4 51.27% 91.6 3.79% 70.9 25.48% 73.5 22.83%
DBPedia 98.4 95.8 2.58% 92.9 5.60% 74.9 23.91% 95.7 2.73% 88.2 10.37% 88.8 9.69%
Yahoo! Answers 71.0 52.2 26.45% 43.5 38.76% 30.0 57.72% 56.8 20.05% 35.3 50.23% 36.6 48.50%
Yelp Review Full 63.5 52.6 17.05% 45.7 28.06% 27.6 56.56% 51.3 19.10% 35.3 44.36% 38.2 39.74%
Yelp Review Polarity 95.3 91.2 4.31% 84.8 11.03% 42.8 55.05% 86.5 9.16% 71.9 24.51% 71.1 25.33%
Enron Spam Email 95.6 85.5 10.56% 69.0 27.84% 76.4 20.13% 85.1 11.03% 78.7 17.68% 75.4 21.14%
Mean 10.97% 22.06% 48.58% 11.05% 31.79% 30.35%
Median 9.46% 25.44% 55.80% 10.10% 30.19% 29.11%
Standard Deviation 8.54% 11.53% 16.91% 7.10% 14.56% 12.93%

Table 5: Effectiveness of WordBug on 8 Datasets using the Word-LSTM and Char-CNN model. Acc is the accuracy of the method and Decrease is the percent
decrease of the accuracy by using the specified attacking method over the original accuracy. Word-LSTM uses Substitution transformer. All results are under
maximum edit distance difference 30 (ϵ = 30).

(30 out of 190) on average, and were able to get an average 73%
decrease in accuracy using DeepWordBug.

To show that our method works on varied selection of maximum
edit distance differences ϵ , we present detailed experimental results
for every datasets. The results are briefly summarized in Figure 6. In
Figure 6, (a)(c) shows how the prediction accuracy decreases when
relaxing the limitation on edit distance, using the result on the AG’s
News Dataset as an example. A full version of Char-CNN result
are in Appendix Figure 14, and Word-LSTM result are in Appendix
Figure 15. As expected, as the number of words attacked increases,
accuracy decreases. However, we observe that even though the
difference on edit distance is very small(e.g. ϵ = 5), DeepWordBug
generates many samples which successfully evade the classifier. Fig-
ure 6 (b)(d) summarize the average accuracy decrease on 8 datasets
among all four DeepWordBug scoring functions and two baselines
when ϵ = 30, on Word-LSTM model and Char-CNN model respec-
tively. On both models, DeepWordBug scoring functions largely
outperforms baseline scoring functions.

An important result of our study is that regardless of the input
type (word-level or character-level), our method is able to evade
the classifiers. This is important for two reasons. First, this proves
that Word-embedding based models are vulnerable to easy attacks
by introducing unknown words. Second, character-level models
are vulnerable to similar attacks, even though they are often used
to improve generalization and not be affected by misspellings [30].

Results from Baseline Comparisons:
We can clearly see that our scoring method for finding important

words is effective because randomly choosing words to change (i.e.,
“Random” in Table 5) has little influence on the final result.

Although the Gradient algorithm is not a black-box method and
despite the fact that it has access to extra information, our scoring
method still achieves better results. This difference is most likely
attributable to the fact that the gradient is not a good measurement
of token importance.

3.4 Transferability
An important property of adversarial image samples is their trans-
ferability. Adversarial samples that are generated for a certainmodel
but can also successfully fool another DNN model on the same task
are considered transferable.

We tested our attack for transferability on adversarial samples
using the Combined Scoring function and the Substitution Trans-
former. In these experiments, we hold the maximum difference
on edit distance (ϵ) to a constant 30 for each sample. We evalu-
ate the transferability using two different types of Word-LSTM
models, one using a Uni-directional LSTM (LSTM), and one using
a Bi-directional LSTM (BiLSTM). Additionally, we use two differ-
ent types of word embeddings: LSTM1/BiLSTM1 are trained with
randomly-initialized embedding, and LSTM2/BiLSTM2 are trained
with GLoVE word embeddings [22].

Figure 7 shows the accuracy results from feeding adversarial
sequences generated by one model to another model on the same
task. The results show that the target model accuracy in these
circumstances is reduced from around 90% to 20-50%. Most adver-
sarial samples can be successfully transferred to other models, even
to those models with different word embedding. This experiment
demonstrates that our method can successfully find those words
that are important for classification and that the transformation is
effective across multiple models.
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Figure 6: Experiment results of comparing baselines and DeepWordBug with different token scoring on two deep learning models. (a)(b) are the result of Word-
LSTM, and (c)(d) are the result of Char-CNN. (a)(c) The variation of model accuracy on generated adversarial samples on AG’s News Dataset. X axis represents
the maximum allowed perturbation in edit distance (equal to number of words been modified in this case), and the Y axis corresponds to the test accuracy on
adversarial samples generated using the respective attacking methods. (b)(d) A summary of DeepWordBug effectiveness: Average relative performance decrease
(percentage of the accuracy when without the attacks) of the deep learning models when classifying adversarial samples generated from DeepWordBug and
baselines. The higher a bar, the more effective. On eight large-scale text datasets, DeepWordBug (with temporal tail) leads to an average decrease of 68% from the
original classification accuracy on the Word-LSTMmodels. On the Char-CNN models, DeepWordBug (with replace-1) leades to an average decrease of 48%. A full
version of this figure can be found in Appendix (Fig 14 and Fig 15).

3.5 Comparing Transformer Functions
We also analyze the effectiveness of the four different transformer
functions we propose. We use DeepWordBug with different trans-
former functions to attack a Word-LSTM model on the AG’s News
dataset. We use the Combined Score and the Substitution Trans-
former to generate adversarial samples, with the maximum edit
distance difference of 30 (ϵ = 30). The results are in Figure 8.

From this figure, we can conclude that varying the transforma-
tion function has a small influence on the attack performance of
DeepWordBug, as all misspelled word are mapped to the same index
“unknown” in the dictionary. Therefore, all the methods will produce
the same sequence if the generated word is not in the vocabulary.
As the probability of collision into another word is small, all the
methods generate similar inputs. Swapping, however, when the
edit distance difference is 2 instead of 1, has a worse performance in

comparison to other methods under the same maximum difference
of edit distance. The results show that varying the token scoring
impacts the results more than changing the token transformer.

3.6 Influence of Dictionary Size
The dictionary size is a hyperparameter of word-based models. As
our attack transforms words into “unknown,” the out of the vocab-
ulary token, one may wonder whether the dictionary size has an
influence on the effectiveness of DeepWordBug. In another experi-
ment, we trained 4 Word-LSTM models with different dictionary
sizes, ranging from 5, 000 to 20, 000. We used the Combined Score
and the Substitution Transformer to generate adversarial samples,
and the maximum edit distance difference is 30 (ϵ = 30).

The results of applying our DeepWordBug attack on the four
models of varying dictionary sizes are shown in Figure 9. The
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Figure 7: Heatmap that shows the transferability of DeepWordBug: The val-
ues are the accuracy of the target model tested on the adversarial samples.

Figure 8: Comparing different token transformer strategies: Each curve rep-
resents the result of attacking the model with one transformer functions. X-
Axis: Maximum edit distance difference Y-Axis: Model accuracy

Figure 9: The accuracy of models when varying the size of the dictionary. X-
Axis: Maximum edit distance difference. Y-Axis: Model accuracy.

accuracy results between the different dictionary sizes we tested
are very small. In other words, our method can work with different
dictionary sizes.

4 CONNECTING TO PREVIOUS STUDIES
Research on attacking deep learning classifier starts from [6] and
[13], when researchers show that malicious manipulation on input

Adversary Distance Space Modifications
Ours Black-box Edit (L0) Input space Swapping two charac-

ters
[21] White-box L∞ Embedding

space
Gradient + Projection

[25] White-box Num. words mod-
ified (L0)

Input space Complicated &
Linguistic-driven

Table 6: Summary of Relevant previous works.

can cause machine learning based spam detectors to generate false
positives. [14] propose the Good Word attack, which is a practical
attack that adds positive, non-spam words into a spam message
to evade machine learning classifiers. These attacks are designed
for simple classifiers such as Naive Bayes, which work directly
on different features. However, these methods do not have any
guarantee on their performance on more complicated models such
as deep learning classifiers. These methods also give no guarantee
of the quality of the generated sample. For example, a spammessage
could become non-spam if too many “good words” were added to
it. Such a message is not false positive, and thus not useful in the
attack.

In 2013, [28] proposes the concept of adversarial sample: imper-
ceptible perturbation on images can fool deep learning classifiers.
This discovery is interesting because small modifications guarantee
the validity of generated samples. Compared to studies of adversar-
ial examples on images, little attention has been paid on generating
adversarial sequences on text. Papernot et al. applied gradient-
based adversarial modifications directly to NLP inputs targeting
RNN-based classifiers in [21]. The resulting samples are called “ad-
versarial sequence,” and we also adopt the name in this paper. The
study proposed a white-box adversarial attack called projected Fast
Gradient Sign Method and applied it repetitively to modify an input
text until the generated sequence is misclassified. It first randomly
picks a word, and then uses the gradient to generate a perturbation
on the corresponding word vector. Then it maps the perturbed word
vector into the nearest word based on Euclidean distance in the
word embedding space. If the sequence is not yet misclassified, the
algorithm will then randomly pick another position in the input.

Recently, [25] used the embedding gradient to determine im-
portant words. The technique used heuristic driven rules together
with hand-crafted synonyms and typos. The method is a white-box
attack since it accesses the gradient of the model. Another paper
[12] measures the importance of each word to a certain class by
using the word frequency from that class’s training data. Then the
method uses heuristic driven techniques to generate adversarial
samples by adding, modifying, or removing important words. This
method needs to access a large set of labeled data.

In summary, our approach differs from the previous approaches
in that they are not applicable in a realistic black-box setting. Our
method does not require knowing the structure, parameters or gra-
dient of the target model, while previous methods do. Also, most
previous approaches used heuristic-driven and complicated mod-
ification approaches. We summarize the differences between our
method and previous methods on generating adversarial text sam-
ples in Table 6. Besides, [21] selects the words randomly (therefore,
we have a ”Random” baseline in our experiment); [25] selects words
using gradient (therefore, we have a ”Gradient” baseline in our ex-
periment). Closely connected to [25], our method uses the edit
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distance at the sequence input space to search for the adversarial
perturbations. Also, our token modification algorithm is simpler
compared to [25].

5 DISCUSSIONS AND ANALYSES
5.1 Why WordBug Works
We present several examples of generated adversarial samples in
Table 7. While the readability of our adversarial samples is subjec-
tive to the reader, we believe that they can be well understood by
most readers, thus resulting in valid adversarial samples.

The key idea we utilized in DeepWordBug is that misspelled
words are usually viewed as “unknown” by the deep-learning mod-
els. In contrast, humans in general can decipher the originally in-
tended word. Psychologists have shown that people can accurately
read paragraphs containing words constructed with swapped letters
with relatively small time-cost of around 11% slowdown in reading
speed [23]. Current deep-learning NLP models have not achieved
the human-level of processing and understanding of natural lan-
guage inputs. Though some deep-learning models use complicated
feature extraction structure that can potentially catch the semantic
expression of the words, they still fail to model the morphological
similarity among words.

Following the algorithm, DeepWordBug can generate adversarial
samples whose only difference to its seed sample are few letter-level
modifications. Some may argue that the DeepWordbug adversarial
samples are not truly adversarial samples, because the modifica-
tions are “perceptible” to human. However, DeepWordBug samples
follows the definition given by Equation 1. More importantly, Deep-
WordBug samples can be understood by human to have the same
meaning with its seed sample. Therefore, it should have the same
prediction result to its seed sample. Asmany of samples are wrongly
predicted into another class by the deep learning classifier, such
samples are deliberately generated corner cases of the machine
learning classifier, which are essentially adversarial samples.

5.2 Transferability
Recently, researchers found an adversary can transform black-box
attacks to a white-box attack by utilizing transferability. [19] pro-
poses an algorithm that queries the black-box target to gather
information and build a local model. After the local model is built,
[19] performs a white-box attack, by assuming the transferability
of adversarial samples; that is, generated adversarial samples on
the local model could also evade the target classifier.

While this local-model method can also be applied to generate
black-box attacks on the text scenario, DeepWordBug is still a better
way to generate adversarial samples in a local model. According to
the results in Figure 15 and Figure 14, our method works better than
the much-better-informed white-box baseline that uses gradient
information. We believe that the token ranking techniques we
explore on text adversarial sequences can shed light on other black-
box techniques in the future.

Figure 10: Performance of the attack on different classes of samples in the
dataset. Each color represents one class of samples. X-Axis: Maximum edit
distance difference. Y-Axis: Accuracy.

5.3 Performance of the attack on different
classes of inputs

We also studied the performance of the attack on different classes
of samples; that is, does our attack works better on certain classes
than other classes? We present Figure 10 to answer this question.
We attack the Word-LSTM model using the Combined Score in this
experiment. From Figure 10, we conclude that our attack works
differently on different classes: The accuracy on negative samples
has been reduced to 20%, but the accuracy on the positive samples
is still 60%.

5.4 Bias in the dataset
In the previous analysis, we assume “unknown” is not biased; that
is, the word “unknown” is not favored by a typical class of inputs
and means nothing to the machine learning model. However, in the
practice, it is often the case that “unknown” is biased toward a cer-
tain class. In that case, by changing a certain word to be “unknown”
the prediction will be biased towards that class, which contradicts
our intended use of “unknown”.

We studied the bias of “unknown” in the Enron Spam Dataset,
as shown in Figure 11(a). From the figure, we can see that the
“unknown” token is highly biased toward spam Emails, as 70% of
“unknown” occurs in spam Emails. Therefore, our attack works
better to make a non-spam Emailto be predicted as spam. This may
answer the question of why our attack works differently among
different sample classes.

We also studied the bias of tokens in the character-level models.
Since our character transformer changes characters to the SPACE
character, we searched for a bias in SPACE. Figure 11(b) shows the
character level distribution. Comparing to “unknown,” the SPACE
symbol is less biased, as SPACE symbol occurs frequently in both
spam Emails and non-spam Emails.

5.5 Rejecting Low Probability Classifications
When evaluating the accuracy of adversarial samples, we choose
the class with the highest probability output. A logical question
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Data -
Model

Message Prediction
score

Prediction

Original Subject: breaking news. would you ref inance if you knew you ’ d save thousands ? we
’ ll get you lnterest as low as 3 . 23 % .

Enron
Spam

Processed inputs subject breaking news would you ref [OOV] if you knew you d save thousands we ll
get you [OOV] as low as ...

1.00 spam

Word-
LSTM

DeepWordBug subject breaking nwes would you ref [OOV] if you knew you d save thuosands we ll
get you [OOV] as low as âĂę

0.14 non-spam

Original Subject: would you have an objection to mapping the east texas gas system to the
carthage curve as opposed to the texoma curve ?

Enron
Spam -

Processed inputs subject would you have an [OOV] to [OOV] the east texas gas system to the carthage
curve as [OOV] to the texoma curve

0.00 non-spam

Word-
LSTM

DeepWordBug sujbect woulg yuo hvae an [OOV] to [OOV] the east texma gsa ststem tp hte caethage
curve bs [OOV] tn che texoam curve

1.00 spam

AG’s
News -

Original saudi trial could alter pace of reform in a hearing room on the 11th floor of the high
court of riyadh ...

0.82 World

Char-
CNN

DeepWordBug saudi trial co_ld alter pace of ref_rm in a hearing room on the 11th floor of the high
court of riyadh ...

0.81 Sci/Tech

AG’s
News -

Original sudan says u.n. sanctions would destroy society khartoum (reuters) - sudan said
saturday that u.n. sanctions

1.00 World

Char-
CNN

DeepWordBug sudan says u_n. sanctions would destroy society khartoum (reuters) - sudan said
saturday that u_n_ sanctions,

0.66 Sports

Table 7: Examples of generated adversarial samples: The red part indicates the difference to the original message. In the character-level models, we represent the
added space characters as “_”.

(a) (b)

Figure 11: (a) Bias of “UNKNOWN” in Enron Spam Dataset. For both figures, X Axis is the total occurrence number of a certain word in the dataset, while y axis
is the ratio of a certain word occurs in the spam Emails to the total occurrence. (b) Bias of “SPACE” character in Enron Spam Dataset when characters are used as
the basic token.

around the accuracy is how strongly the adversarial samples evade
the classifier. In other words, does the model classify the wrong
answer with strong confidence (give a wrong output with high
probability) in the adversarial sample, or is the classification unsure
(give a rather uniform output probability among the answers). In the
second case, a possible defense is to treat low probability outputs as
noise and reject the sample. However, we show that our adversarial
samples will lead the model to give a high output probability on
the wrong prediction.

We present two histograms to analyze the distribution of the
output probability of the machine learning model on the fooled
class in Figure 12. In the experiment, we used the Combined Score

and the Substitution Transformer to generate adversarial samples,
where maximum edit distance ϵ equals 30.

We show that 90% of the generated adversarial samples success-
fully make the deep learning model output a wrong answer with
confidence probability larger than 0.9 in the Enron Spam Dataset.
The result shows that generated adversarial samples are powerful
in evading the classifier.

5.6 Adversarial training
Adversarial training is a technique to improve the deep learning
model with adversarial samples[7]. In another experiment we show
that our adversarial sample could help to improve the deep learning
models to defend future attacks. We generated 20,000 adversarial
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Figure 12: How strong the machine learning model will believe the wrong
answer lead by the adversarial sample, the x-axis are the confidence range
and the y-axis are the probability distribution. The result is generated using
Word-LSTM model on the Enron Spam Dataset (Number of classes = 2), with
edit distance maximum ϵ = 30
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Figure 13: Adversarial training: The curve of the test accuracy on original
samples and adversarial samples after epochs of adversarial training.

samples on a subset of training data, and created a dataset with
those adversarial samples and their corresponding original samples.
We trained the model with the dataset for 10 epochs. While the
accuracy of the model on normal samples slightly decreases, on
adversarial samples the accuracy rapidly increases from around
12% (before the training) to 62% (after the training). The result is
shown in Figure 13. The learning rate is set to be 0.0005 in this
experiment.

5.7 Autocorrection
A natural way to evaluate our proposed attacking method is to use
an autocorrector for comparison. We tested the generated Deep-
WordBug adversarial samples on a revised Word-LSTM model on
which an autocorrector is applied before the input. The autocorrec-
tor we use is Python autocorrect 0.3.0 package. The result is shown
in Table 8.

From the result in Table 8, we observe that while spellchecker
reduces the performance of the adversarial samples, the reduction
amount depends on which transformer function is chosen. Stronger
attacks such as removing 2 characters in every selected word still
can successfully reduce the accuracy of target deep learning model
to 34%, which is close to a random guess in a 4-class prediction.

Original Attack (ϵ =
30)

Autocorrector

Swapping-1 88.45% 14.77% 77.34%
Substitution-1 88.45% 12.28% 74.85%
Deletion-1 88.45% 14.06% 62.43%
Insertion-1 88.45% 12.28% 82.07%
Substitution-2 88.45% 11.90% 54.54%
Deletion-2 88.45% 14.25% 33.67%

Table 8: Model accuracy with autocorrector.

There are several issues about using an autocorrector in practice.
First, an autocorrector will add enormous overhead to the model.
Autocorrection does not support batch processing, which takes a
long time to process huge number of inputs. Second, the attackers
can exploit the spell checker to make the situation even more dan-
gerous. For example, attackers can hide malicious information in a
deliberately created misspelling, and since such misspelling will be
cleaned by the autocorrector, the machine learning model has no
way to distinguish it from a normal message.

6 CONCLUSION
In this paper, we targeted a vulnerability with deep learning models
for text classification. We present a novel framework, DeepWord-
Bug, which can generate adversarial text sequences that canmislead
deep learning models by exploiting this vulnerability. Our method
has the following advantages:

• Black-box: DeepWordBug generates adversarial samples
in a pure black-box manner.

• Performance: While constraining the edit distance differ-
ence of the adversarial sample, DeepWordBug achieves
better performance compared to baseline methods on eight
NLP datasets across two state-of-the-art deep learning ar-
chitectures: Word-LSTM and Char-CNN.

Our experimental results indicate that DeepWordBug results in
a 68% decrease on average from the original classification accuracy
for a word-level LSTM model and 48% decrease on average for a
character-level CNN model, both of which models are state-of-the-
art.

We also demonstrated several important properties of DeepWord-
Bug through experiments. First, the adversarial samples generated
on one model can be successfully transferred to other models, re-
ducing the target model accuracy from around 90% to 20-50%.

Second, our experiments show that the number of words in the
dictionary used for inputs to the deep learning model does not
affect our result.

Lastly, by using the samples generated by DeepWordBug in train-
ing data, the model accuracy on generated adversarial samples
increases from 12% to around 62%.
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7 APPENDIX

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14: Experiment results of comparing baselines and DeepWordBug with different token scoring on Char-CNN model across eight datasets. (a) - (h) Model
accuracy on generated adversarial samples, each figure represents the result on a certain dataset. The X axis represents the maximum allowed perturbation in
edit distance (number of characters modified), and the Y axis corresponds to the test accuracy on adversarial samples generated using the respective attacking
methods. (i) A summary of different attacking methods in the form of the percentage of average accuracy decrease. each bar represents one attacking method.

7.1 Influence of Different Transformers
As an extension to Figure 8, We conduct another experiment on all 8 datasets to study how varying different transformer functions affect the
attack performance on a Word-LSTM model. We use combined score to generate adversarial samples, and maximum edit distance difference
is 30(ϵ = 30). The result is shown in Figure 16.

From these figures, we can conclude the same conclusion to 8 that varying transformation function have small influence on the attack
performance. However, swapping costs twice edit distance distance, thus are worse than other methods.

7.2 Influence of dictionary size
In another experiment, we attack 4 Word-LSTM models trained with different dictionary sizes, ranging from 5,000 to 20,000, using
DeepWordBug on all 8 datasets. We use combined score and the substitute transformer to generate adversarial samples, and maximum edit
distance difference is 30(ϵ = 30).

The results are shown in Figure 17. These result, together with 9, show that our method can work with different dictionary sizes.
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(d) (e) (f)

(g) (h) (i)

Figure 15: Experiment results of comparing baselines and DeepWordBug with different token scoring on word-LSTM model across eight datasets. (a) - (h) Model
accuracy on generated adversarial samples, each figure represents the result on a certain dataset. The X axis represents the maximum allowed perturbation in
edit distance (equal to number of words been modified in this case), and the Y axis corresponds to the test accuracy on adversarial samples generated using the
respective attacking methods. (i) A summary of different attacking methods in the form of the percentage of average accuracy decrease. each bar represents one
attacking method.

7.3 Classification Confidence on adversarial samples
We present histograms to analyze the distribution of the output probability of the machine learning model on the fooled class in Figure 18. In
the experiment, we use the combined score and substitute transformer to generate adversarial samples, where the maximum edit distance
difference ϵ = 30.

This result is highly related to the number of the class in the prediction, which varies on different datasets. Together with the result in
Figure 12, we can conclude that on every dataset, at least half of the adversarial samples have mislead the model to a probability 0.2 larger
than a random guess (dashed line in the figures), which means generated adversarial samples are powerful to mislead models to believe a
wrong answer with high confidence.

7.4 Bias in different datasets
Figure 11 shows the bias on the dataset, including both word models and character models.
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(g) (h) (i)

Figure 16: Comparing different transformer algorithms: From (a) to (h), each curve represents the result of attacking the model with one transformer functions.
(i) A summary of different transformers in the form of the percentage of average accuracy decrease. X-Axis: Maximum edit distance difference. Y-Axis: Model
accuracy.

Now we present the word occurrence ratio of frequent words, including “unknown”, on all 8 dataset in Figure 19. From the result, we can
conclude that large bias of unknown exists in some datasets (i.e., Enron Spam Dataset) while the bias is very small in other datasets (i.e.,
AG’s News).

We also present the occurrence count of frequent letters, including the space symbol, on all 8 datasets in Figure 20. Comparing to the
word level, our result shows that on the character level the data is less biased.

7.5 Attacking inputs of different classes
In another experiment, we study the performance of DeepWordBug attack on different classes of samples. In the experiment, we attack the
Word-LSTM model use combined score to generate adversarial samples in this experiment.

We present the figures in the Figure 21. From the figure, we can see that our attack works differently on different classes. This phenomenon
can be caused by the bias existed in the dataset, which we present in Figure 19.
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Figure 17: Effect of DeepWordBug on models with different dictionary sizes: From (a) to (h), each curve shows how our attacks work on models with different
dictionary size on one dataset. (i) A summary of the attack on models with different dictionary size in the form of the percentage of average accuracy decrease.
X-Axis: Maximum edit distance difference. Y-Axis: Model accuracy
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Figure 18: How strong the machine learning model will believe the wrong answer lead by the adversarial sample, the x-axis are the confidence range and the
y-axis are the probability distribution. The dashed line shows for the base probability, as the probability should be larger than average. (a) - (h) The confidence
probability distribution on different datasets (i) A summary of different transformers in the form of the percentage of average accuracy decrease.
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Figure 19: Word frequency ratio of frequent words on different classes of the dataset. Each color represents a different class in the data. From (a) to (h), each bar
plot shows the how often a certain word occurs in one class on one dataset. Y-Axis: Word occurrence ratio, the result of every class sums up to 1
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Figure 20: Count of frequent characters on different classes of the dataset. Each color represents a different class in the data. From (a) to (h), each bar plot shows
the count of frequent characters on one dataset. Y-Axis: Number of occurrence
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(e)

Figure 21: DeepWordBug attack on different classes of samples in the dataset. Each color represents the result of attack on one class of samples in the data. From
(a) to (e), each plot shows the result of one dataset. X-Axis: Maximum edit distance difference. Y-Axis: Accuracy

21


