
Memory-Augmented Monte Carlo Tree Search

Chenjun Xiao, Jincheng Mei, Martin Müller
Computing Science, University of Alberta

Edmonton, Canada
{chenjun,jmei2,mmueller}@ualberta.ca

Abstract

This paper proposes and evaluates Memory-Augmented
Monte Carlo Tree Search (M-MCTS), which provides a new
approach to exploit generalization in online real-time search.
The key idea of M-MCTS is to incorporate MCTS with a
memory structure, where each entry contains information of
a particular state. This memory is used to generate an ap-
proximate value estimation by combining the estimations of
similar states. We show that the memory based value ap-
proximation is better than the vanilla Monte Carlo estimation
with high probability under mild conditions. We evaluate M-
MCTS in the game of Go. Experimental results show that M-
MCTS outperforms the original MCTS with the same number
of simulations.

Introduction

The key idea of Monte Carlo Tree Search (MCTS) is to con-
struct a search tree of states evaluated by fast Monte Carlo
simulations (Coulom 2006). Starting from a given game
state, many thousands of games are simulated by random-
ized self-play until an outcome is observed. The state value
is then estimated as the mean outcome of the simulations.
Meanwhile, a search tree is maintained to guide the direc-
tion of simulation, for which bandit algorithms can be em-
ployed to balance exploration and exploitation (Kocsis and
Szepesvári 2006). However, with large state spaces, the ac-
curacy of value estimation cannot be effectively guaranteed,
since the mean value estimation is likely to have high vari-
ance under relatively limited search time. Inaccurate estima-
tion can mislead building the search tree and severely de-
grade the performance of the program.

Recently, several machine learning approaches have been
proposed to deal with this drawback of MCTS. For example,
deep neural networks are employed to learn domain knowl-
edge and approximate a state value function. They are inte-
grated with MCTS to provide heuristics which can improve
the search sample efficiency in practice (Silver et al. 2016;
Tian and Zhu 2015).

The successes of the machine learning methods can be
mostly contributed to the power of generalization, i.e., simi-
lar states share information. Generalized domain knowledge
is usually represented by function approximation, such as

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a deep neural network, which is trained offline from an ex-
pert move dataset or self-generated simulations (Silver et al.
2016).

Compared with the amount of research done on discov-
ering generalization from an offline learning procedure, not
too much attention has focused on exploiting the benefits of
generalization during the online real-time search. The cur-
rent paper proposes and evaluates a Memory-Augmented
MCTS algorithm to provide an alternative approach that
takes advantage of online generalization. We design a mem-
ory, where each entry contains information about a particu-
lar state, as the basis to construct an online value approxi-
mation. We demonstrate that this memory-based framework
is useful for improving the performance of MCTS in both
theory and practice, using an experiment in the game of Go.

The remainder of the paper is organized as follows: Af-
ter preliminaries introduced in Section 2, we theoretically
analyze the memory framework in Section 3. The proposed
Memory-Augmented MCTS algorithm is presented in Sec-
tion 4. Related work and experimental results are shown in
Section 5 and 6, respectively. In Section 7, we come to our
conclusion and future work.

Preliminaries

The Setting

Let S be the set of all possible states of a search problem.
For s ∈ S , let V̂ (s) = 1

Ns

∑Ns

t=1 Rs,t denote the value
estimation of state s from simulations, where Rs,t is the
outcome of a simulation, and Ns is the number of simula-
tions starting from state s. The true value of a state s is de-
noted by V ∗(s). The main idea of our Memory-Augmented
MCTS algorithm is to approximate value estimations with
the help of a memory, each entry of which contains the fea-
ture representation and simulation statistics of a particular
state. The approximate value estimation is performed as fol-
lows: given a memory M and a state x, we find the M
most similar states Mx ⊂ M according to a distance met-
ric d(·, x), and compute a memory-based value estimation
V̂M(x) =

∑M
i=1 wi(x)V̂ (i), s.t.

∑M
i=1 wi(x) = 1.

Let Xs,t = |Rs,t − V ∗(s)| be the sampling error from
the tth simulation of state s. In the analysis of the most pop-
ular MCTS algorithm UCT (Kocsis and Szepesvári 2006),
Xs,t is assumed to be σ2-subgaussian, so the sampling er-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1455

ror has zero mean and its variance is upper bounded by
σ2 (Boucheron, Lugosi, and Massart 2013). We also adopt
the same assumption in our analysis. We denote the value
estimation error of state s by δs = |V̂ (s) − V ∗(s)|, and
the true value difference between states s and x by εs,x =
|V ∗(s) − V ∗(x)|. Using the property of subgaussian vari-
ables, δs is σ2

Ns
-subgaussian (Boucheron, Lugosi, and Mas-

sart 2013). Let εM = maxi∈Mx
εi,x, we assume that our

memory addressing scheme is able to control εM within the
range [0, ε]. The following lemma states the concentration
property of subgaussian variables.

Lemma 1. (Boucheron, Lugosi, and Massart 2013) If X is
σ2-subgaussian, then P (X ≥ ε) ≤ exp(− ε2

2σ2).

Monte Carlo Tree Search

MCTS builds a tree to evaluate states with fast simulations
(Coulom 2006). Each node in the tree corresponds to a spe-
cific state s ∈ S , and contains simulation statistics V̂ (s)
and N(s). At each iteration of the algorithm, one simulation
starts from an initial state s0, and proceeds in two stages:
in-tree and rollout. When a state st is already represented in
the current search tree, a tree policy is used to select an ac-
tion to go to the next state. The most popular choice of the
tree policy is to use bandit algorithms such as UCB1 (Kocsis
and Szepesvári 2006). For states outside the tree, a roll-out
policy is used to simulate a game until the end, where a tra-
jectory of visited states T = {s0, s1, . . . , sT } and a final
return R are obtained. The statistics of s ∈ T in the tree are
updated according to:

N(s) ← N(s) + 1

V̂ (s) ← V̂ (s) +
R− V̂ (s)

N(s)

In addition the search tree is grown. In the simplest scheme,
the first visited node that is not yet in the tree is added to it.

Entropy Regularized Policy Optimization

We denote the probability simplex by Δ = {w : w ≥
0,1 ·w = 1}, and denote the entropy function by H(w) =
−w · logw. For any vector q ∈ R

n, the entropy-regularized
optimization problem is to find the solution of

max
w∈Δ

{w · q+ τH(w)} (1)

where τ > 0 is the temperature parameter. This problem has
recently drawn much attention in the reinforcement learn-
ing community (Nachum et al. 2017; Haarnoja et al. 2017;
Ziebart 2010). One nice property of this problem is that
given the vector q, it has a closed form solution. Define
the scalar value function Fτ (the ”softmax”) by Fτ (q) =

τ log(
∑M

i=1 e
qi/τ), and the vector-valued function fτ (q)

(the ”soft indmax”) by fτ (q) =
eq/τ

∑M
i=1 eqi/τ

= e(q−Fτ (q))/τ ,
where the exponentiation is component-wise. Note that fτ
maps any real valued vector into a probability distribution.
The next lemma states the connection between Fτ , fτ and
the entropy regularized optimization problem.

Lemma 2. (Nachum et al. 2017; Haarnoja et al. 2017;
Ziebart 2010)

Fτ (q) =max
w∈Δ

{w · q+ τH(w)}

=fτ (q) · q+ τH(fτ (q))

Value Approximation with Memory
In our approach, the memory is used to provide an approx-
imate value function V̂M(x) =

∑M
i=1 wi(x)V̂ (i), where∑M

i=1 wi(x) = 1 are the weights and M is a parameter
defining the neighbouring states in the memory according to
some distance metric d(·, x). One question naturally arises,
is this memory-based value approximation better than the
vanilla mean outcome estimation? In this section we attempt
to answer this question by showing that |V̂M(x)−V ∗(x)| ≤
δx for state x with high probability under a mild condition.
We first show a trivial bound for Pr(|V̂M(x)−V ∗(x)| ≤ δx),
then provide an improved bound with entropy regularized
policy.

A Trivial Probability Bound

The first step is to upper bound |V̂M(x)− V ∗(x)| using the
triangle inequality:

|
M∑

i=1

wi(x)V̂ (i)− V ∗(x)|

≤
M∑

i=1

wi(x)|V̂ (i)− V ∗(x)|

≤
M∑

i=1

wi(x)(|V̂ (i)− V ∗(i)|+ |V ∗(i)− V ∗(x)|)

=
M∑

i=1

wi(x)(δi + εi,x)

(2)

Let δM = maxi∈Mx
δi and εM = maxi∈Mx

εi,x. Using the
fact that

∑M
i=1 wi(x) = 1, we can further take an upper

bound of (2) by
∑M

i=1 wi(x)(δi + εi,x) ≤ δM + εM . This
upper bound is very loose, since we do not specify any par-
ticular choice of the weights w. With a standard probability
argument we can immediately get the following:
Theorem 1. For states x satisfying αx = δx − ε > 0, let
nmin = mini∈Mx

Ni. Then with probability at least 1 −
β, our memory-based value function approximation has less
error than δx provided that:

nmin ≥ 2σ2

α2
x

log(M/β) (3)

Condition (3), under which the high probability bound can
be guaranteed, is quite severe. It requires that the minimum
simulation numbers of all addressed memory entries are suf-
ficiently large. This trivial bound is weak since the upper
bound (2) depends on the worst memory entry addressed,
without specifying any choice of the weights w. We show
that the entropy regularized policy optimization can help us
to fix this problem.

1456

Improved Probability Bound with Entropy
Regularized Policy

We now provide an improvement of the previous bound
by specifying the choice of the weights w using entropy
regularized optimization. Let c be a vector where ci =
δi + εi,x, 1 ≤ i ≤ M . Our choice of w should minimize
the upper bound (2), which is equivalent to:

max
w∈Δ

{w · (−c)} (4)

This linear optimization problem has solution wj = 1 for
j = argmini(δi + εi,x) and wk = 0 for k �= j. However, in
practice we do not know the accurate value of δi and εi,x and
applying this deterministic policy may cause the problem of
addressing the wrong entries. We provide an approximation
by solving the entropy regularized version of this optimiza-
tion problem:

max
w∈Δ

{w · (−c) + τH(w)} (5)

As τ approaches zero, we recover the original problem (4).
According to Lemma 2, the closed form solution of prob-
lem (5) is Fτ (−c) = τ log(

∑M
i=1 e

−ci/τ) by setting w =
fτ (−c). By equation (2), −fτ (−c) · (−c) = −Fτ (−c) +
τH(fτ (−c)) ≤ −Fτ (−c) + τ logM . Therefore, to show
Pr{(2) ≤ δ} ≥ 1 − β for some small constant β, it suffices
to show that Pr{−Fτ (−c) + τ logM ≤ δ} ≥ 1− β.
Theorem 2. For states x satisfying αx = δx − ε > 0, let
n =

∑M
i=1 Ni. By choosing the weight w = fτ (−c) =

e−c/τ/
∑M

i=1 e
−ci/τ , with probability at least 1 − β our

memory-based value function approximation has less error
than δx provided that:

n ≥ 2σ2

(αx − τ logM)2
log(1/β) (6)

Proof. We show that under condition (6), it can be guaran-
teed that Pr (−Fτ (−c) + τ logM ≤ δx) ≥ 1− β.

Pr

(
−τ log(

M∑
i=1

exp(−ci/τ)) ≤ δx − τ logM

)

= Pr

(
M∑
i=1

exp(−ci/τ) ≥ exp(−(δx − τ logM)/τ)

)

≥ Pr

(
M∑
i=1

exp(−δi/τ) ≥ exp(−(δx − ε− τ logM)/τ)

)

≥ Pr(∃ i, exp(δi/τ) ≤ exp((δx − ε− τ logM)/τ)

= 1−
M∏
i=1

Pr (δi ≥ α− τ logM)

≥ 1−
M∏
i=1

exp(− (αx − τ logM)2Ni

2σ2
)

= 1− exp(− (αx − τ logM)2n

2σ2
)

The first inequality comes from our assumption that all
εi,x ≤ ε, and the last inequality comes from the concen-
tration property of subgaussian variables (Lemma 1). All

other inequalities can be obtained using standard probability
arguments. Equation (6) can be derived directly with stan-
dard algebra.

The probability bound provided by Theorem 2 is much
better than the one in Theorem 1, since n is the sum of sim-
ulation counts of all addressed memory entries, which has to
be greater than nmin.

Memory-Augmented MCTS

In the previous section, we prove that our memory-based
value function approximation is better than the mean out-
come evaluation used in MCTS with high probability under
mild conditions. The remaining question is to design a prac-
tical algorithm and incorporate it with MCTS. In particular,
this first requires choosing an approximation of the weight
function w = fτ (−c).

Approximating w = fτ (−c)

Let φ : S → R
D be a function to generate the feature repre-

sentation of a state. For two states s, x ∈ S , we approximate
the difference between V ∗(s) and V ∗(x) by a distance func-
tion d(s, x) which is set to be the negative cosine of the two
states’ feature representations:

εs,x ≈ d(s, x) = − cos(φ(s), φ(x)) (7)

We apply two steps to create φ. First, take the output of
an inner layer of a deep convolutional neural network and
normalize it. We denote this process as ζ : S → R

L.
In practice L will be very large which is time-consuming
when computing (7). We overcome this problem by apply-
ing a feature hashing function h : RL → R

D (Weinberger
et al. 2009), and the feature representation is computed by
φ(s) = h(ζ(s)). One nice property of feature hashing is that
it can keep the inner product unbiased. Since ζ(s) is normal-
ized, we have:

E[cos(φ(s), φ(x))] = cos(ζ(s), ζ(x))

δx is the term corresponding to the sampling error, which
is inversely proportional to the simulation numbers: δx ∝
1/Nx. Combining with (7) and the fact that ey is very close
to y+1 for small y we can get our approximation of fτ (−c):

wi(x) =
Ni exp(−d(i, x)/τ)

∑M
j=1 Nj exp(−d(j, x)/τ)

(8)

By applying these approximations our model becomes a spe-
cial case of kernel based methods, such as Locally Weighted
Regression and Kernel Regression (Friedman, Hastie, and
Tibshirani 2001), where the kernel function can be defined
by ki(x) = exp(−d(i, x)/τ)/

∑M
j=1 exp(−d(j, x)/τ). τ

acts like the smoothing factor in those kernel based meth-
ods. Our model is also similar to the “attention” scheme
used in memory based neural networks (Graves et al. 2016;
Weston, Chopra, and Bordes 2015; Vinyals et al. 2016;
Pritzel et al. 2017).

1457

Figure 1: A brief illustration of M-MCTS. When a leaf state
s is searched, the feature representation φ(s) is generated,
which is then used to query the memory based value ap-
proximation V̂M(s). V̂M(s) is used to update s and all its
ancestors according to equation (9), as indicated by the red
arrows in the figure.

Memory Operations

One memory M is maintained in our approach. Each entry
of M corresponds to one particular state s ∈ S . It contains
the state’s feature representation φ(s) as well as its simula-
tion statistics V̂ (s) and N(s). There are three operations to
access M: update, add and query.

Update If the simulation statistics of a state s have been
updated during MCTS, we also update its corresponding val-
ues V̂ (s) and N(s) in the memory.

Add To include state s, we add a new memory entry
{φ(s), V̂ (s), N(s)}. If s has already been stored in the
memory, we only update V̂ (s) and N(s) at the correspond-
ing entry. If the maximum size of the memory is reached, we
replace the least recently queried or updated memory entry
with the new one.

Query The query operation computes a memory based
approximate value given a state x ∈ S. We first find the
top M similar states in M based on the distance function
d(·, x). The approximated memory value is then computed
by V̂M(x) =

∑M
i=1 wi(x)V̂ (i) where the weights are com-

puted according to equation (8). The two advantages of ad-
dressing the top M similar states are: first, to restrict the
maximum value difference of addressed states with V ∗(x)
within a range, which is shown to be useful in our analysis;
second, to make queries in a very large memory scalable. We
use an approximate nearest neighbours algorithm to perform
the queries based on SimHash (Charikar 2002).

Integrating Memory with MCTS

We are now ready to introduce our Memory-Augmented
MCTS (M-MCTS) algorithm. Figure (1) provides a brief
illustration. The main difference between the proposed M-
MCTS and regular MCTS is that, in each node of a M-
MCTS search tree, we store an extended set of statistics:

{N(s), V̂ (s), NM(s), V̂M(s)}

Here, NM is the number of evaluations of the approximated
memory value V̂M(s). During in-tree search of MCTS, in-
stead of V̂ (s), we use (1−λs)V̂ (s)+λsV̂M(s) as the value
of state s, which is used for in-tree selection, for example in
the UCB formula. λs is a decay parameter to guarantee no
bias asymptotically.

In original MCTS, a trajectory of visited states T =
{s0, s1, . . . , sT } is obtained at the end of each simulation.
The statistics of all states s ∈ T in the tree are updated. In
M-MCTS, we also update the in-memory statistics by per-
forming the update(s) operation of M. Furthermore, when a
new state s is searched by MCTS, we compute φ(s) and use
the add(s) operation to include s in the memory M.

The most natural way to obtain V̂M(s) and NM(s) is to
compute and update their value every time s is visited dur-
ing the in-tree search stage. However, this direct method is
time-consuming, especially when the memory size is large.
Instead, we only compute the memory value at the leaf node
and backpropagate the value to its ancestors. Specifically, let
sh ∈ T be the state just added to the tree whose feature rep-
resentation φ(sh) has already been computed, and its mem-
ory approximated value V̂M(sh) is computed by query(sh).
Let NM(sh) =

∑M
j=1 kj(sh)Nj , R = V̂M(sh) ∗NM(sh).

For state si ∈ {s0, . . . , sh}, we perform the following up-
dates, where η ≥ 1 is a decay parameter.

X ← max(NM(sh)/η
|i−h|, 1)

NM(si) ← NM(si) +X

V̂M(si) ← V̂M(si) +
R− V̂M(si) ∗X

NM(si)

(9)

The reason for the decay parameter η is because the
memory-approximated value of a state is more similar to its
closer ancestors.

Related Work

The idea of utilizing information of similar states has been
previously studied in game solver. (Kawano 1996) provided
a technique where proofs of similar positions are reused
for proving another nodes in a game tree. (Kishimoto and
Müller 2004) applied this to provide an efficient Graph His-
tory Interaction solution, for solving the game of Checkers
and Go.

Memory architectures for neural networks and reinforce-
ment learning have been recently described in Memory Net-
works (Weston, Chopra, and Bordes 2015), Differentiable
Neural Computers (Graves et al. 2016), Matching Network
(Vinyals et al. 2016) and Neural Episodic Control (NEC)
(Pritzel et al. 2017). The most similar work with our M-
MCTS algorithm is NEC, which applies a memory frame-
work to provide action value function approximation in re-
inforcement learning. The memory architecture and address-
ing method are similar to ours. In contrast to their work, we
provide theoretical analysis about how the memory can af-
fect value estimation. Furthermore, to our best knowledge,
this work is the first one to apply a memory architecture in
MCTS.

1458

The role of generalization has been previously exploited
in transposition tables (Childs, Brodeur, and Kocsis 2008),
Temporal-Difference search (TD search) (Silver, Sutton,
and Müller 2012), Rapid Action Value Estimation (RAVE)
(Gelly and Silver 2011), and mNN-UCT (Srinivasan et al.
2015). A transposition table provides a simple form of gen-
eralization. All nodes in the tree corresponding to the same
state share the same simulation statistics. Our addressing
scheme can closely resemble a transposition table by set-
ting τ close to zero. In M-MCTS with τ > 0 the memory
can provide more generalization, which we show to be ben-
eficial both theoretically and practically.

TD search uses linear function approximation to gener-
alize between related states. This linear function approxi-
mation is updated during the online real-time search. How-
ever, with complex non-linear function approximation such
as neural networks, such updates are impossible to perform
online. Since our memory based method is non-parametric,
it provides an alternative approach for generalization during
real time search.

RAVE uses the all-moves-as-first heuristic based on the
intuition that the value of an action is independent of when
it is taken. Simulation results are not only updated to one,
but to all actions along the simulation path. mNN-UCT ap-
plies kernel regression to approximate a state value function,
which has been shown equivalent to our addressing scheme
using our choice of approximations in Section 4. However,
we use the difference between feature representations as the
distance metric, while mNN-UCT applies the distance be-
tween nodes in the tree. Also, both RAVE and mNN-UCT
do not provide any theoretical justifications.

Experiments

We evaluate M-MCTS in the ancient Chinese game of Go
(Müller 2002).

Implementation Details

Our implementation applies a deep convolutional neural net-
work (DCNN) from (Clark and Storkey 2015), which is
trained for move prediction by professional game records. It
has 8 layers in total, including one convolutional layer with
64 7 × 7 filters, two convolutional layers with 64 5 × 5 fil-
ters, two layers with 48 5 × 5 filters, two layers with 32
5 × 5 filters, and one fully connected layer. The network
has about 44% prediction accuracy on professional game
records. The feature vector φ(s) is first extracted from the
output of Conv7 which is the last layer before the final fully
connected layer of the neural network. The dimension of this
output is 23104. A dimension reduction step using feature
hashing as described in Section 4 is then applied. The feature
hashing dimension is set to 4096, which gives φ(s) ∈ R

4096.
The hash code in our SimHash implementation has 16

bits. We use 8 hash tables, each of which corresponds to
a unique hash function. We also apply a multiple probing
strategy. Suppose that a feature vector φ(s) is mapped to the
hash bin bi at the ith hash table. Let the hash code of bi
be hi. To search the neighbours of φ(s) in the ith table, we
search those bins whose hash codes’ hamming distance to

hi is less than a threshold, set to 1 in our implementation.
The discount parameter η in equation (9) to update memory
approximated values is set to 2.

Baseline

Our baseline is based on the open source Go program Fuego
(Enzenberger and Müller 2008 2017), but adds DCNN to
improve performance. We adopt the method from (Gelly
and Silver 2007) and use DCNN to initialize simulation
statistics. Suppose that DCNN is called on the state s that
has just been added to the tree. For a move m, let pm be
the move probability from the network, and s′ the state
transformed by taking m on s. Let pmax be the maximum
of the network’s output move probabilities. We compute
two statistics V̂DCNN(s

′) = 0.5 ∗ (1.0 + pm/pmax) and
N̂DCNN(s) = CNN STRENGTH ∗ pm/pmax. These two val-
ues are used as the initial statistics when creating s′. We set
CNN STRENGTH to 200 in our experiment.

We implement DCNN in MCTS in a synchronized way,
where the search continues after the DCNN evaluation is re-
turned. To increase speed, we restrict DCNN calls to the first
100 nodes visited during the search. This baseline achieves
a win rate of 97% against original Fuego with 10,000 sim-
ulations per move. We implement M-MCTS based on this
baseline. The same DCNN is used to extract features for the
memory.

Results

We first study how the parameters M and τ can affect the
performance of M-MCTS, since these two parameters to-
gether control the degree of generalization. The parameter
M is chosen from {20, 50, 100}, and τ from {0.05, 0.1, 1}.
The size of M is set to 10000. We vary the number of sim-
ulations per move from {1000, 5000, 10000}. Results are
summarized in Figure 2(a)-(c). The best result we have is
from the setting {M = 50, τ = 0.1}, which achieves a
71% win rate against the baseline with 10,000 simulations
per move. The standard error of each result is around 2.5%.
For M = 20 and M = 50, the performance of M-MCTS
scales well with the number of simulations per move with
τ = 1 and τ = 0.1. A small temperature τ = 0.05 can-
not beat the baseline at all. We believe the reason is that in
this setting M-MCTS only focuses on the closest neighbours
for generalization, but does not do enough exploration. For
M = 100, M-MCTS does not perform well in any setting
of τ , since larger M increases the chance of including less
similar states.

We then investigate the impact of the size of M by vary-
ing it from {1000, 5000, 10000}. M and τ are set to 50 and
0.1 respectively. Results with different number of simula-
tions per move are summarized in Figure 2(d). Intuitively,
a large memory can provide better performance, since more
candidate states are included for query. The results shown
in Figure 2(d) confirm this intuition: M-MCTS achieves the
best performance with |M| = 10000, while small memory
size |M| = 1000 can even lead to negative effects for value
estimation in MCTS. We also compare M-MCTS with the
baseline with equal computational time per move. By setting

1459

(a) M=20 (b) M=50 (c) M=100 (d) Testing Memory Size

Figure 2: Experimental results. Figure (a)-(c) shows the results of testing different value of M . Figure (d) shows the results of
testing different size of memory. In all figures, x-axis is the number of simulations per move, y-axis means the winning rate
against the baseline.

M = 50, τ = 0.1 and with 5 seconds per move, M-MCTS
achieves a 61% win rate against the baseline.

Conclusion and Future Work

In this paper, we present an efficient approach to exploit
online generalization during real-time search. Our method,
Memory-Augmented Monte Carlo Tree Search (M-MCTS),
combines the original MCTS algorithm with a memory
framework, to provide a memory-based online value approx-
imation. We demonstrate that this can improve the perfor-
mance of MCTS in both theory and practice. We plan to
explore the following two potential future directions. First,
we would like to investigate if we can obtain better gen-
eralization by combining an offline learned value approxi-
mation with our online memory-based framework. Second,
the feature representation used in M-MCTS reuses a neural
network designed for move prediction. Instead, we plan to
explore approaches that incorporate feature representation
learning with M-MCTS in an end-to-end fashion, similar to
(Pritzel et al. 2017; Graves et al. 2016).

Acknowledgements

The authors wish to thank Andrew Jacobsen for provid-
ing source code of Fuego with the neural network, and the
anonymous referees for their valuable advice. This research
was supported by NSERC, the Natural Sciences and Engi-
neering Research Council of Canada.

References

Boucheron, S.; Lugosi, G.; and Massart, P. 2013. Con-
centration inequalities: A nonasymptotic theory of indepen-
dence. Oxford University Press.
Charikar, M. S. 2002. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth an-
nual ACM symposium on Theory of computing, 380–388.
ACM.
Childs, B. E.; Brodeur, J. H.; and Kocsis, L. 2008. Trans-
positions and move groups in Monte Carlo tree search.
In IEEE Symposium On Computational Intelligence and
Games, 2008., 389–395.
Clark, C., and Storkey, A. J. 2015. Training deep convolu-
tional neural networks to play Go. In Bach, F. R., and Blei,

D. M., eds., Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France, 6-
11 July 2015, volume 37 of JMLR Proceedings, 1766–1774.
JMLR.org.
Coulom, R. 2006. Efficient selectivity and backup opera-
tors in Monte-Carlo tree search. In van den Herik, J.; Cian-
carini, P.; and Donkers, H., eds., Proceedings of the 5th In-
ternational Conference on Computer and Games, volume
4630/2007 of Lecture Notes in Computer Science, 72–83.
Turin, Italy: Springer.
Enzenberger, M., and Müller, M. 2008-2017. Fuego. http:
//fuego.sourceforge.net.
Friedman, J.; Hastie, T.; and Tibshirani, R. 2001. The el-
ements of statistical learning, volume 1. Springer series in
statistics, Springer, Berlin.
Gelly, S., and Silver, D. 2007. Combining online and of-
fline knowledge in UCT. In ICML ’07: Proceedings of the
24th international conference on Machine learning, 273–
280. ACM.
Gelly, S., and Silver, D. 2011. Monte-Carlo Tree Search and
Rapid Action Value Estimation in computer Go. Artificial
Intelligence 175(11):1856–1875.
Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka,
I.; Grabska-Barwińska, A.; Colmenarejo, S. G.; Grefen-
stette, E.; Ramalho, T.; Agapiou, J.; et al. 2016. Hybrid
computing using a neural network with dynamic external
memory. Nature 538(7626):471–476.
Haarnoja, T.; Tang, H.; Abbeel, P.; and Levine, S. 2017.
Reinforcement learning with deep energy-based policies. In
Proceedings of the 34nd International Conference on Ma-
chine Learning, ICML 2017, Sydney, Australia, 6-11 August
2017.
Kawano, Y. 1996. Using similar positions to search game
trees. In Nowakowski, R. J., ed., Games of No Chance, vol-
ume 29 of MSRI Publications, 193–202. Cambridge Univer-
sity Press.
Kishimoto, A., and Müller, M. 2004. A general solution to
the graph history interaction problem. In Nineteenth Na-
tional Conference on Artificial Intelligence (AAAI 2004),
644–649.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
Monte-Carlo planning. In Fürnkranz, J.; Scheffer, T.;

1460

and Spiliopoulou, M., eds., Machine Learning: ECML
2006, volume 4212 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg. 282–293.
Müller, M. 2002. Computer Go. Artificial Intelligence
134(1–2):145–179.
Nachum, O.; Norouzi, M.; Xu, K.; and Schuurmans, D.
2017. Bridging the gap between value and policy based re-
inforcement learning. arXiv preprint arXiv:1702.08892.
Pritzel, A.; Uria, B.; Srinivasan, S.; Puigdomènech, A.;
Vinyals, O.; Hassabis, D.; Wierstra, D.; and Blundell, C.
2017. Neural episodic control. In Proceedings of the
34nd International Conference on Machine Learning, ICML
2017, Sydney, Australia, 6-11 August 2017.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of Go with deep neural networks and tree search.
Nature 529(7587):484–489.
Silver, D.; Sutton, R.; and Müller, M. 2012. Temporal-
difference search in computer Go. Machine Learning
87(2):183–219.
Srinivasan, S.; Talvitie, E.; Bowling, M. H.; and Szepesvári,
C. 2015. Improving exploration in UCT using local mani-
folds. In AAAI, 3386–3392.
Tian, Y., and Zhu, Y. 2015. Better computer Go player with
neural network and long-term prediction. In International
Conference on Learning Representations.
Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D.; et al.
2016. Matching networks for one shot learning. In Advances
in Neural Information Processing Systems, 3630–3638.
Weinberger, K.; Dasgupta, A.; Langford, J.; Smola, A.; and
Attenberg, J. 2009. Feature hashing for large scale multitask
learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, 1113–1120. ACM.
Weston, J.; Chopra, S.; and Bordes, A. 2015. Memory net-
works. In International Conference on Learning Represen-
tations.
Ziebart, B. D. 2010. Modeling purposeful adaptive behavior
with the principle of maximum causal entropy. Ph.D.diss.,
Carnegie Mellon University.

1461

