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Abstract

Scene text detection has witnessed rapid development in

recent years. However, there still exists two main chal-

lenges: 1) many methods suffer from false positives in their

text representations; 2) the large scale variance of scene

texts makes it hard for network to learn samples. In this

paper, we propose the ContourNet, which effectively han-

dles these two problems taking a further step toward ac-

curate arbitrary-shaped text detection. At first, a scale-

insensitive Adaptive Region Proposal Network (Adaptive-

RPN) is proposed to generate text proposals by only focus-

ing on the Intersection over Union (IoU) values between

predicted and ground-truth bounding boxes. Then a nov-

el Local Orthogonal Texture-aware Module (LOTM) mod-

els the local texture information of proposal features in t-

wo orthogonal directions and represents text region with a

set of contour points. Considering that the strong unidi-

rectional or weakly orthogonal activation is usually caused

by the monotonous texture characteristic of false-positive

patterns (e.g. streaks.), our method effectively suppresses

these false positives by only outputting predictions with high

response value in both orthogonal directions. This gives

more accurate description of text regions. Extensive exper-

iments on three challenging datasets (Total-Text, CTW1500

and ICDAR2015) verify that our method achieves the state-

of-the-art performance. Code is available at https://

github.com/wangyuxin87/ContourNet.

1. Introduction

Scene text detection is a task to detect text regions in the

complex background and label them with bounding box-

es. Accurate detection result benefits a wide scope of real-

world applications and is the fundamental step for end-to-

end text recognition [36, 5, 39, 24].

Benefiting from the development of deep learning, re-

cent methods have achieved significant improvement in
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Figure 1. Comparison between jointly modeling the texture in-

formation in arbitrary orientations and respectively modeling tex-

ture information in two orthogonal directions. We visualize the

heatmap of predicted contour points. NMS is implemented to each

heatmap for better visualization. FPs can effectively be suppressed

by considering the response in two orthogonal directions simulta-

neously.

scene text detection task. Meanwhile, the research focus

has shifted from horizontal texts [48, 14] to multi-oriented

texts [25, 49] and more challenging arbitrary-shaped texts

[34, 35] (e.g. curved texts). However, due to the specif-

ic properties of scene text such as large variance in color,

texture, scale, etc., there are still two challenges to be ad-

dressed in arbitrary-shaped scene text detection.

The first challenge is false positives (FPs), which is not

received enough attention in recent researches [38] and is

regarded as one of the key bottlenecks for more accurate

arbitrary-shaped scene text detection in this paper. Recent

CNN-based methods jointly model the texture information

in arbitrary orientations by using k×k convolutional kernel

[46, 43]. However, this operation is sensitive to some spe-

cific cases containing similar texture characteristics to text

regions, and tends to perform identically high response to

these cases (see in top of Fig.1). SPCNET [38] attributes

this problem to the lack of context information clues and i-

naccurate classification scores, thus a text context module is

proposed to compensate global semantic feature and bound-

ing boxes are further rectified by the segmentation map. Li-
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u et al. [21] re-score the detection results with the confi-

dence of four vertexes to supervise the compactness of the

bounding boxes. Different from these methods, we handle

the FPs by using only local texture information, which is a

more straightforward approach and contains less computa-

tion. As shown in bottom of Fig.1, our motivation mainly

comes from two observations: 1) FPs with strong unidirec-

tional texture characteristics are weakly activated in its or-

thogonal direction (e.g. some vertical streaks); 2) FPs can be

effectively suppressed by considering the responses in both

orthogonal directions simultaneously. Thus, it is reasonable

to model the texture information along two orthogonal di-

rections. Inspired by traditional edge detection operators

(e.g. Sobel, etc.), we heuristically use horizontal and verti-

cal directions in our approach.

The second challenge is the large scale variance of scene

texts. Compared with general objects, the scale variation is

much larger in scene texts, which makes it hard for CNN-

based methods to learn samples. To address this problem,

MSR [43] uses a multi-scale network to obtian powerful

representation of texts with various scales. DSRN [36] at-

tributes this problem to the inconsistent activation of multi-

scale texts, thus a bi-directional operation is proposed to

map the convolutional features to a scale-invariant space.

Different from these methods solving the large scale vari-

ance problem through aggregation of multi-scale features,

we pay attention to the shape information and use a scale-

invariant metric to optimize our network.

In this paper, we propose a novel text detector to

effectively solve these two problems achieving accurate

arbitrary-shaped scene text detection, which is called Con-

tourNet. As shown in Fig.2, given an input image, Adap-

tive Region Proposal Network (Adaptive-RPN) first gener-

ates text proposals by automatically learning a set of bound-

ary points over the text region that indicate the spatial ex-

tend of text instance. The training object of Adaptive-

RPN is driven by IoU values between the predicted and

ground-truth bounding boxes, which is invariant to the s-

cale [27, 49]. Thus, Adaptive-RPN is insensitive to the

large scale variance of scene texts and can automatically

account for shape information of text regions to achieve fin-

er localization compared with conventional RPN approach-

es [26, 8]. To capture the distinct texture characteristics in

contour regions of texts, we propose a Local Orthogonal

Texture-aware Module (LOTM) to model the local texture

information of proposal features in two orthogonal direc-

tions, and represent text region with contour points in two

different heatmaps, either of which only responds to the tex-

ture characteristics in a certain direction. Finally, Point Re-

scoring Algorithm effectively filters predictions with strong

unidirectional or weakly orthogonal activation by consid-

ering the response in both orthogonal directions simultane-

ously. In this way, text regions are detected and represented

with a set of high-quality contour points.

The contributions of this paper are three-fold: 1) We

propose a novel approach for FP suppression by modeling

the local texture information in two orthogonal direction-

s, which is a more straightforward approach and contain-

s less computation compared with previous methods. 2)

The proposed Adaptive-RPN effectively handles the large

scale variance problem and achieves finer localization of

text regions, which can be easily embedded into existing

approaches. 3) Without external data for training, the pro-

posed method achieves 85.4% and 83.9% in F-measure on

Total-Text and CTW1500 dataset with 3.8 FPS and 4.5 FP-

S respectively, which outperforms recent counterparts by a

large margin.

2. Related Works

Scene text detection has been a popular research topic

for a long time with many approaches proposed [48, 30, 44,

46, 25, 42, 34, 32, 33]. Conventionally, connected compo-

nent (CC) based and sliding window based methods have

been widely used in text localization [48, 30, 44]. As deep

learning becomes the most promising machine learning tool

[40, 17, 18, 47], scene text detection has achieved remark-

able improvement in recent years. These methods can be

divided into two categories: regression based methods and

segmentation based methods.

Regression based methods [29, 49], inspired by general

object detection methods [7, 19, 8], localize text boxes by

predicting the offsets from anchors or pixels. Lyu et al. [25]

adopt a similar architecture as SSD and rebuild text instance

with predicted corner points. Wang et al. [35] use recurrent

neural network (RNN) for text region refinement and adap-

tively predict several pairs of points to represent arbitrary-

shaped text. Different from these methods localizing text re-

gions by implementing refinement on pre-defined anchors,

EAST [49] and DDR [10] propose a new approach for accu-

rate and efficient text detection, which directly regress the

offsets from boundaries or vertexes to current point. Based

on these direct regression methods, LOMO [46] proposes

an iterative refinement module to iteratively refine bound-

ing box proposals for extremely long texts, and then pre-

dicts center line, text region, and border offsets to rebuild

text instance.

Segmentation based methods [23, 34] are mainly in-

spired by FCN [22]. Recent segmentation based method-

s usually use different representation to describe text re-

gion, and then rebuild text instance through specific post-

procession. PixelLink [4] predicts connections between

pixels and localizes text region by separating the links be-

longing to different text instances. To handle the adjacent

texts, Tian et al. [32] design a two-step clustering to split

dense text instances from segmentation map. PSENet [34]

gradually expands kernels at certain scale to split the close
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Figure 2. The pipeline of ContourNet. It mainly contains three parts: Adaptive Region Proposal Network (Adaptive-RPN), Local

Orthogonal Texture-aware Module (LOTM) and Point Re-scoring Algorithm. The box branch is similar to other 2-stage methods.

text instances.

Our method integrates the advantages of regression

based methods and segmentation based methods, which

adopts a two-stage architecture and represents text region

with contour points. Benefiting from Adaptive-RPN and

FP suppression, our method effectively handles the large s-

cale variance problem and gives more accurate description

of text regions compared with previous methods.

3. Proposed Method

The proposed method mainly consists of three parts:

Adaptive-RPN, LOTM and Point Re-scoring Algorithm. In

this section, we first briefly describe the overall pipeline of

the proposed method, and then detail the motivation and im-

plementation of these three parts respectively.

3.1. Overall pipeline

The architecture of our ContourNet is illustrated in Fig.2.

First, a backbone network is constructed to generate shared

feature maps. Inspired by FPN [16] which can obtain strong

semantic features for multi-scale targets, we construct a

backbone with FPN-like architecture by implementing lat-

eral connections in the decoding layer. Next, we propose

an Adaptive-RPN described in Sec.3.2 for proposal gener-

ation by bounding spatial extent of several refined points.

The input of LOTM are proposal features obtained by using

Deformable RoI pooling [50] and bilinear interpolation to

the shared feature maps. Then, LOTM decodes the contour

points from proposal features by modeling the local texture

information in horizontal and vertical directions respective-

ly. Finally, a Point Re-scoring Algorithm is used to filter

FPs by considering the responses in both directions simul-

taneously. The details of LOTM and Point Re-scoring Algo-

rithm are presented at Sec.3.3 and 3.4 respectively. Bound-

ing box regression and classification (text/non-text) in box

branch are similar to other 2-stage methods, which are used

to further refine bounding boxes.

3.2. Adaptive Region Proposal Network

Region Proposal Network is wildly used in existing ob-

ject detection methods. It aims to predict a 4-d regression

vector {∆x,∆y,∆w,∆h} to refine current bounding box

proposal Bc = {xc, yc, wc, hc} to a predicted bounding box

Bt = {xc+wc∆xc, yc+hc∆yc, wce
∆wc , hce

∆hc}, and the

training objective is to optimize the smooth l1 loss [26].

As an approach proposed to improve the IoU value

between predicted and ground-truth bounding boxes, this

aforementioned 4− d representation optimized by ln-norm

loss is sensitive to the scale variation. In general, positive

bounding boxes are selected through an IoU metric (e.g.

IoU > 0.5). However, several pairs of bounding boxes in

different scales with the same IoU value may have different

ln-norm distances. As there is not a powerful correlation

between optimizing ln-norm loss and improving their IoU

values [27], we infer that this gap makes it hard for CNN-

based methods to learn samples with large scale variance in

scene text detection.

To handle this problem, we propose a new Adaptive-

RPN to focus on only IoU values between predicted and

ground-truth bounding boxes which is a scale-invariant met-

ric, and use a set of pre-defined points P = {(xl, yl)}
n
l=1

(1

center point and n − 1 boundary points) instead of the 4-d

vector for the proposal representation. The refinement can

be expressed as:
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Figure 3. The comparison between conventional RPN (left) and

Adaptive-RPN (right). The proposed Adaptive-RPN adaptively

regresses the offsets to pre-defined points. Predicted bounding

box is generated by bounding the spatial extend of refined points.

Red points are pre-defined points in current bounding box propos-

al (e.g. center point in conventional RPN and pre-defined points P

in Adaptive-RPN), and green points are refined points. The yellow

dotted lines indicate the regressed offsets.

R = {xr, yr}
n
r=1 = {(xl + wc∆xl, yl + hc∆yl)}

n
l=1 (1)

Where {∆xl,∆yl}
n
l=1

are the predicted offsets to pre-

defined points, wc and hc are width and height of current

bounding box proposal. As shown in Fig.3, the predict-

ed offsets are used to process a local refinement on n pre-

defined points in current bounding box proposal. Then, we

use a max-min function in eq.(2) to bound these refined

points with 4 extreme points for the representation of pre-

dicted bounding box. Specially, the center point {x′, y′} is

used to normalize the bounding box (e.g. if xtl > x′, then

xtl = x′).

Proposal ={xtl, ytl, xrb, yrb}

={min{xr}
n
r=1,min{yr}

n
r=1,

max{xr}
n
r=1,max{yr}

n
r=1}

(2)

Compared with conventional RPN that considers only

rectangular spatial scope, the proposed Adaptive-RPN au-

tomatically accounts for shape and semantically important

local areas for finer localization of text regions. Without

additional supervision, we optimize the regression loss in

Adaptive-RPN through an IoU loss (see in eq.(4)) by cal-

culating the overlapping between the predicted and ground-

truth bounding boxes.

3.3. Local Orthogonal Texture­aware Module

Inspired by traditional edge detection operators (e.g. So-

bel, etc.) which have achieved remarkable performance be-

fore deep learning becomes the most promising machine

learning tool, we skillfully incorporate the idea of tradi-

tional edge detection operators into LOTM and represent

text region with a set of contour points. These points con-

taining strong texture characteristics can accurately localize

Figure 4. The visualization of LOTM (left). Point Re-scoring Al-

gorithm (right) is only used in testing stage.

texts with arbitrary shapes (rectangular and irregular shapes

shown in Fig. 5).

As shown in Fig.4, LOTM contains two parallel branch-

es. In the top branch, we slide a convolutional kernel with

size 1 × k over the feature maps to model the local texture

information in horizontal direction, which only focuses on

the texture characteristics in a k-range region. This local

operation is proved to be powerful in our experiments, and

because of the small amount of computation, it also keeps

the efficiency of our method. In a like manner, the bottom

branch is constructed to model the texture characteristics in

vertical direction through a convolutional kernel with size

k×1. k is a hyper-parameter to control the size of receptive

field of texture characteristics, which is discussed in abla-

tion experiments in Sec.4. Finally, two sigmoid layers are

implemented to normalize the heatmaps to [0, 1] in both di-

rections. In this way, text regions can be detected in two

orthogonal directions and represented with contour points

in two differen heatmaps, either of which only responds to

texture characteristics in a certain direction.

3.4. Point Re­scoring Algorithm

As false-positive predictions can be effectively sup-

pressed by considering the response value in both orthog-

onal directions, two heatmaps from LOTM are further pro-

cessed through Point Re-scoring Algorithm. As shown in

Algorithm 1, points in different heatmaps are first processed

through Non-Maximum Suppression (NMS) to achieve a

tight representation. Then, to suppress the predictions with

strong unidirectional or weakly orthogonal response, we on-

ly select the points with distinct response in both heatmap-

s as candidates. Finally, text region can be represented

with polygon made up by these high-quality contour points.

NMSH and NMSV mean NMS operation in horizontal

and vertical direction respectively. We set θ to 0.5 for better

trade-off between recall and precision.

3.5. Training Objective

For learning ContourNet, the loss function is formulated

as:
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L =LArpncls
+ λAreg

LArpnreg
+ λHcpLHcp

+ λV cpLV cp + λboxcls
Lboxcls

+ λboxreg
Lboxreg

(3)

Where LArpncls
, LArpnreg

, LHcp, LV cp, Lboxcls
and

Lboxreg
denote Adaptive-RPN classification loss, Adaptive-

RPN regression loss, contour point loss in horizontal direc-

tion, contour point loss in vertical direction, bounding box

classification loss and bounding box regression loss respec-

tively. We use balance weights λAreg
, λHcp, λV cp, λboxcls

and λboxreg to represent the importance among six losses.

We simply balance λAreg
and set others to 1 in our experi-

ment.

Adaptive-RPN: Adaptive-RPN is optimized with an

IoU loss to achieve robust performance on scale variance.

The loss function is formulated as:

LArpnreg
= − log

Intersection+ 1

Union+ 1
(4)

Where Intersection and Union are calculated be-

tween the predicted and ground-truth bounding boxes. For

LArpncls
, we simply use the cross-entropy loss.

LOTM: To solve the unbalanced problem between the

size of background and foreground, we use the class-

balanced cross-entropy loss for contour point learning. The

loss function is formulated as:

Lcp = −
Nneg

N
yi log pi −

Npos

N
(1− yi) log(1− pi) (5)

Where yi and pi denote ground-truth and prediction.

Nneg and Npos are numbers of negatives and positives re-

spectively. N is the sum of Nneg and Npos. Loss for hor-

izontal prediction (LHcp) and vertical prediction (LV cp)
have the identical form as Lcp.

Algorithm 1 Point Re-scoring Algorithm

Require: Heatmaps in two orthogonal directions: Hmap,

V map.

Ensure: Contour point candidates: Contourmap.

1: Contourmap = zeros like(Hmap)
2: Hmap = NMSH(Hmap)
3: V map = NMSV (V map)
4: for (i, j) in Hmap do

5: if Confidence[Hmap[i, j]] > θ then

6: if Confidence[V map[i, j]] > θ then

7: Contourmap[i, j] = 1
8: end if

9: end if

10: end for

11: return Contourmap

For Lboxclass and Lboxreg in box branch , we choose the

similar forms in [26, 7].

4. Experiments

4.1. Datasets

ICDAR2015 [12] is a dataset proposed in the Challenge

4 of ICDAR 2015 Robust Reading Competition. It contains

totally 1500 images (1000 training images and 500 testing

images) with annotations labeled as 4 vertices at word level.

Different from previous datasets containing horizontal texts

only, texts in this benchmark have arbitrary orientations.

CTW1500 [45] is a dataset for curve text detection. It

contains 1000 images for training and 500 images for test-

ing. The texts are labeled with 14 boundary points at text-

line level.

Total-Text [3] is a recent challenging dataset. Differ-

ent from CTW1500, the annotations in this dataset are

labelled in word-level. This dataset includes horizontal,

multi-oriented, and curved texts. It contains 1255 images

for training and 300 images for testing.

4.2. Implementation Details

We use the ResNet50 [9] pre-trained on ImageNet as

our backbone. The model is implemented in Pytorch and

trained on 1 NVIDIA TITANX GPU using Adam optimiz-

er [13]. We only use the official training images of each

dataset to train our model. Data augmentation includes

random rotation, random horizontal flip and random crop.

The models are trained 180k iterations in total. Learning

rates start from 2.5 × 1e − 3, and are multiplied by 0.1 af-

ter 120k and 160k iterations. We use 0.9 momentum and

0.0001weight decay. Multi-scale training is used in our

training stage. The short side of images is set to {400, 600,

720, 1000, 1200}, and the long side is maintained to 2000.

Blurred texts labeled as DO NOT CARE are ignored during

training.

As all the datasets use polygon annotations, which are

feasible to rebuild texts with arbitrary shapes, we use

distance transform edt in Scipy to obtain the two-points

wide edge. All the points on the edge are regarded as

contour points and used to train our model. The label in

Adaptive-RPN can be obtained by using a similar max-min

function in eq.(2) on ground-truth polygons. During train-

ing, we optimize both heatmaps in LOTM with the same

supervision.

In testing stage, we use the single scale image as input

and evaluate our results through official evaluation proto-

cols. Due to the different scales of test images have a great

impact on the detection performance[35, 20], we scale the

images in Total-Text and CTW1500 datasets to 720×1280,

and fix the resolution to 1200 × 2000 for ICDAR 2015.

Alpha-Shape Algorithm [1] is used to generate bounding
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boxes based on contour point candidates.

4.3. Ablation Study

We conduct several ablation studies on CTW1500 and

Total-Text datasets to verify the effectiveness of Adaptive-

RPN and LOTM. All the models are trained using only of-

ficial training images.

Adaptive-RPN: We first study the relationship between

the performance of Adaptive-RPN and number of pre-

defined points. As shown in Tab.1, Adaptive-RPN imple-

mented with 9 pre-defined points obtains 0.6 % improve-

ment in F-measure. We set n to 9 in the remaining experi-

ments.

n-points Recall Precision F-measure

5-points 85.7 81.2 83.3

9-points 84.1 83.7 83.9

Table 1. The relationship between performance and the number of

pre-defined points used in Adaptive-RPN. 5-points means top-left,

top-right, bottom-right, bottom-left and center points.

Method Recall Precision F-measure

RPN† 83.8 85.1 84.5

Adaptive-RPN† 83.9 86.9 85.4

RPN* 85.6 80.8 83.1

Adaptive-RPN* 84.1 83.7 83.9

Small Middle Large

Gain † 1.4 0.3 1.1

Gain * 1.0 0.7 0.8

Table 2. The performance gain of Adaptive-RPN. * and † are re-

sults from CTW1500 and Total-Text respectively. Small, Middle

and Large is short for small-size texts, middle-size texts and large-

size texts.

size Recall Precision F-measure

3 83.9 86.9 85.4

5 83.6 85.7 84.7

7 83.4 85.4 84.4

Table 3. The relationship between the performance and size of re-

ceptive field of texture characteristics in LOTM on Total-Text.

Method Recall Precision F-measure

S-direction 80.5 80.6 80.6

Jointly 82.7 85.3 84.0

LOTM 83.9 86.9 85.4

Table 4. The performance gain of LOTM on Total-Text. S-

direction means the texture information is only modeled along a

single direction (horizontal direction is implemented here). Joint-

ly means the method jointly models the texture information in a

3× 3 convolutional kernel.

To verify the performance gain of the proposed

Adaptive-RPN, we conduct several ablation experiments on

CTW1500 and Total-Text. LOTM is implemented in all the

models. As shown in the top of Tab.2, Adaptive-RPN ob-

tains 0.9% and 0.8% improvement in F-measure on Total-

Text and CTW1500 respectively. To further demonstrate

the improvement of detecting texts in large variance scale,

we further divide the results into three parts according to

the size distribution on these two datasets. We consider on-

ly the pairs belonging to the same category to be valid for

better comparison (e.g. small-size predicted bounding box

matches small-size ground-truth bounding box. Note that

the number of ignored pairs is almost identical in both meth-

ods, which affects little to the results.). As shown in the bot-

tom of Tab.2, Adaptive-RPN outperforms conventional RP-

N in F-measure by a large margin in detecting varying-size

texts (e.g. 1.4%, 0.3% and 1.1% improvement in F-measure

in small-size, middle-size and large-size texts respectively

on Total-Text).

LOTM: To evaluate the effectiveness of the proposed

LOTM, we conduct several experiments on Total-Text.

Firstly, we conduct several experiments to study the rela-

tionship between the performance and size of convolutional

kernels in LOTM. As shown in Tab.3, model implemented

with 1×3 and 3×1 sizes achieves the highest performance

(85.4 % in F-measure). When we further increase the size

of receptive field, the performance declines. We infer that

the larger receptive field containing more noise is harmful to

the performance, which further demonstrates the effective-

ness of local texture information modeling. We set the size

of convolutional kernels to 3 in the remaining experiments.

Secondly, we evaluate the effectiveness of orthogonal

modeling. As shown in Tab.4, modeling texture information

along only a single direction is a less powerful approach

(85.4 % vs 80.6 % in F-measure). Compared with jointly

modeling the texture information in arbitrary orientations,

LOTM obtains a significant improvement in recall, preci-

sion and F-measure with 1.2%, 1.6% and 1.4% respectively.

4.4. Comparisons with State­of­the­Art Methods

We compare our methods with recent state-of-the-art

methods on Total-Text, CTW1500 and ICDAR2015 to

demonstrate its effectiveness for arbitrary shape text detec-

tion.

4.4.1 Evaluation on Curved Text Benchmark

We evaluate the proposed method on Total-Text to test its

performance for curved texts.

As shown in Tab.5, with the help of Adaptive-RPN and

false-positive suppression, the proposed method achieves a

new state-of-the-art result of 83.9%, 86.9% and 85.4% in

recall, precision and F-measure respectively without exter-

nal data, and outperforms existing state-of-the-art methods
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Method Ext R P F FPS

SegLink* [28] - 23.8 30.3 26.7 -

EAST* [49] - 36.2 50.0 42.0 -

Lyu et al.[24] X 55.0 69.0 61.3 -

TextSnake [23] X 74.5 82.7 78.4 -

MSR [43] X 74.8 83.8 79.0 4.3

PSENet [33] - 75.1 81.8 78.3 3.9

PSENet [33] X 78.0 84.0 80.9 3.9

Wang et al.[35] - 76.2 80.9 78.5 -

TextDragon [6] X 74.2 84.5 79.0 -

TextField [41] X 79.9 81.2 80.6 6

PAN [34] - 79.4 88.0 83.5 39.6

LOMO [46] X 75.7 88.6 81.6 4.4

LOMO† [46] X 79.3 87.6 83.3 -

CRAFT [2] X 79.9 87.6 83.6 -

Ours - 83.9 86.9 85.4 3.8

Table 5. The single-scale results on Total-Text. * indicates the re-

sults from [23]. Ext is the short for external data used in training

stage. † means testing at multi-scale setting. The evaluation pro-

tocol is DetEval [37].

Method Ext R P F FPS

CTPN* [31] - 53.8 60.4 56.9 7.1

SegLink* [28] - 40.0 42.3 40.8 10.7

EAST* [49] - 49.1 78.7 60.4 21.2

CTD+TLOC [45] - 69.8 77.4 73.4 13.3

TextSnake [23] X 85.3 67.9 75.6 -

PSENet [33] - 75.6 80.6 78.0 3.9

PSENet [33] X 79.7 84.8 82.2 3.9

Tian et al.[32] X 77.8 82.7 80.1 3

Wang et al.[35] - 80.2 80.1 80.1 -

TextDragon [6] X 81.0 79.5 80.2 -

PAN [34] - 77.7 84.6 81.0 39.8

LOMO [46] X 69.6 89.2 78.4 4.4

LOMO† [46] X 76.5 85.7 80.8 -

CRAFT [2] X 81.1 86.0 83.5 -

TextField [41] X 79.8 83.0 81.4 6

MSR [43] X 78.3 85.0 81.5 4.3

Ours - 84.1 83.7 83.9 4.5

Table 6. The single-scale results on CTW1500. * indicates the

results from [45]. Ext is the short for external data used in training

stage. † means testing at multi-scale setting.

(e.g. LOMO [46], PAN [34], PSE[33]) by a large margin.

Meanwhile, it also achieves impressive speed (3.8 FPS).

Though CRAFT [2] use additional character-level annota-

tions to train their model, our method trained with only o-

riginal annotations outperforms CRAFT [2] by 1.8 % in F-

measure. Besides, LOMO [46] uses external images to train

their model and further tests their results at multi-scale lev-

el. Our method, which is trained with only official data and

tested at single scale, outperforms LOMO [46] by 2.1% in

Method Ext R P F FPS

EAST [49] X 73.5 83.6 78.2 13.2

Liao et al. [15] X 79.0 85.6 82.2 6.5

Lyu et al. [25] X 70.7 94.1 80.7 3.6

FOTS [20] X 82.0 88.8 85.3 7.8

PixelLink [4] - 81.7 82.9 82.3 7.3

MSR [43] X 78.4 86.6 82.3 4.3

PSENet [33] - 79.7 81.5 80.6 1.6

PSENet [33] X 84.5 86.9 85.7 1.6

PAN [34] - 77.8 82.9 80.3 26.1

TextDragon [6] X 81.8 84.8 83.1 -

LOMO [46] X 83.5 91.3 87.2 3.4

TextField* [41] X 83.9 84.3 84.1 1.8

Liu et al. [21] X 83.8 89.4 86.5 -

Tian et al. [32] X 85.0 88.3 86.6 3

CRAFT [2] X 84.3 89.8 86.9 -

Wang et al. [35] - 83.3 90.4 86.8 -

Wang et al.† [35] - 86.0 89.2 87.6 -

Ours - 86.1 87.6 86.9 3.5

Table 7. The single-scale results on ICDAR2015. * means testing

at multi-scale setting. † means SE blocks [11] implemented in

their backbone.

F-measure. The visualization of curved text detection re-

sults are shown in Fig.5(a).

4.4.2 Evaluation on Long Curved Text Benchmark

To show the performance of our ContourNet for long curved

texts, we compare its performance with state-of-the-arts on

CTW1500 dataset, which is annotated at text-line level.

As shown in Tab.6, the proposed method is much better

than other counterparts including CTD+TLOC [45], MSR

[43], TextSnake [23], which are designed for curved texts.

Though text region refinement in LOMO [46] achieves

promising results on representing long texts, our Contour-

Net, which benefits from Adaptive-RPN, achieves much

higher performance (83.9 % vs 80.8% in F-measure). Com-

pared with MSR[43] which also uses contour points to de-

scribe text regions, ours shows advantages in both recal-

l and F-measure without external data for training, where

the relative improvement reaches 5.8% and 2.4% respec-

tively. In addition, the proposed method runs at 4.5 FPS on

this dataset, which is faster than most recent methods. The

visualization of long curved text detection results are shown

in Fig.5(b).

4.4.3 Evaluation on Multi-oriented Text Benchmark

We evaluate our method on ICDAR 2015 to test its perfor-

mance for multi-oriented texts. RoIAlign [8] is used for the

generation of proposal features on this dataset.

Several experimental results are shown in Tab.7. Our
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(a) Total-Text

(b) CTW1500

(c) ICDAR2015

Figure 5. Results on different datasets. (a) results on Total-Text; (b) results on CTW1500; (c) results on ICDAR2015.

method achieves 86.9 % in F-measure, which is only a little

lower than Wang et al.[35] (87.6% in F-measure). However,

they implement Squeeze-and-Excitation (SE) blocks [11]

in their backbone, which is more powerful to recalibrate

channel-wise feature responses. When implemented with-

out SE blocks, their method achieves 86.8 % in F-measure,

which is lower than our method. The visualization of multi-

oriented text detection results are shown in Fig.5(c).

4.5. Effectiveness of ContourNet

We further demonstrate the effectiveness of our method

in the following two aspects. More discussions about this

part are shown in the supplementary.

Effectiveness of Adaptive-RPN. As the large scale vari-

ance problem exists in scene text detection, conventional

RPN obtains a coarse localization of text region when the

regression distance is large or the target box has quite dif-

ferent ratio to default box. Benefiting from the awareness

of shape information and the scale-invariant training object,

the proposed Adaptive-RPN performs better in these cas-

es and achieves finer localization of text regions. Some

qualitative examples of conventional RPN and proposed

Adaptive-RPN are shown in the supplementary.

Effectiveness of false-positive suppression. 1) Quan-

tification. The value of θ in Point Re-scoring Algorithm

affects the ratio of suppressed FPs to caused false nege-

tives (FNs). The value of ratio is considerable when θ goes

from 0.1 to 0.9 (an elaborated chart is shown in the supple-

mentary). Thus, our method is much more effective in sup-

pressing FPs than in causing FNs. 2) Qualitative analysis.

Though few FNs are caused, it is worth mentioning that the

retained positive points with strong texture information in

both orthogonal directions are able to accurately represent

texts (see in Fig.1). 3) Implemented with conventional RP-

N, our method can achieve 84.5% and 83.1% in F-measure

on Total-Text and CTW1500 respectively, surpassing most

methods in Tab.5 and Tab.6. Though it is hard to verify

which representation is better for arbitrary-shaped text de-

tection (e.g. region predictions [35, 34], contour points [43],

adaptive points [35], etc.), FP problem is the uniform chal-

lenge in each method. In this regard, our method obtains a

significant improvement compared with the previous.

5. Conclusion

In this paper, we propose a novel scene text detection

method (ContourNet) to handle the false positives in text

representation and the large scale variance problem. Con-

tourNet mainly consists of three parts including Adaptive-

RPN, LOTM and Point Re-scoring Algorithm. Adaptive-

RPN localizes the preliminary proposals of texts by bound-

ing the spatial extend of several semantic points. LOT-

M models the local texture information in two orthogonal

directions and represents text region with contour points.

Point Re-scoring Algorithm filters FPs by considering the

response values in both orthogonal directions simultaneous-

ly. The effectiveness of our approach has been demonstrat-

ed on several public benchmarks including long, curved and

oriented text cases. In future works, we prefer to develop an

end-to-end text reading system.
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